L(s) = 1 | + (0.866 − 0.5i)2-s + (1.5 + 2.59i)3-s + (0.499 − 0.866i)4-s − i·5-s + (2.59 + 1.5i)6-s + (0.866 + 0.5i)7-s − 0.999i·8-s + (−3 + 5.19i)9-s + (−0.5 − 0.866i)10-s + (1.73 − i)11-s + 3·12-s + 0.999·14-s + (2.59 − 1.5i)15-s + (−0.5 − 0.866i)16-s + (−1.5 + 2.59i)17-s + 6i·18-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (0.866 + 1.49i)3-s + (0.249 − 0.433i)4-s − 0.447i·5-s + (1.06 + 0.612i)6-s + (0.327 + 0.188i)7-s − 0.353i·8-s + (−1 + 1.73i)9-s + (−0.158 − 0.273i)10-s + (0.522 − 0.301i)11-s + 0.866·12-s + 0.267·14-s + (0.670 − 0.387i)15-s + (−0.125 − 0.216i)16-s + (−0.363 + 0.630i)17-s + 1.41i·18-s + ⋯ |
Λ(s)=(=(338s/2ΓC(s)L(s)(0.839−0.543i)Λ(2−s)
Λ(s)=(=(338s/2ΓC(s+1/2)L(s)(0.839−0.543i)Λ(1−s)
Degree: |
2 |
Conductor: |
338
= 2⋅132
|
Sign: |
0.839−0.543i
|
Analytic conductor: |
2.69894 |
Root analytic conductor: |
1.64284 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ338(23,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 338, ( :1/2), 0.839−0.543i)
|
Particular Values
L(1) |
≈ |
2.28401+0.675586i |
L(21) |
≈ |
2.28401+0.675586i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866+0.5i)T |
| 13 | 1 |
good | 3 | 1+(−1.5−2.59i)T+(−1.5+2.59i)T2 |
| 5 | 1+iT−5T2 |
| 7 | 1+(−0.866−0.5i)T+(3.5+6.06i)T2 |
| 11 | 1+(−1.73+i)T+(5.5−9.52i)T2 |
| 17 | 1+(1.5−2.59i)T+(−8.5−14.7i)T2 |
| 19 | 1+(5.19+3i)T+(9.5+16.4i)T2 |
| 23 | 1+(2+3.46i)T+(−11.5+19.9i)T2 |
| 29 | 1+(1+1.73i)T+(−14.5+25.1i)T2 |
| 31 | 1−4iT−31T2 |
| 37 | 1+(2.59−1.5i)T+(18.5−32.0i)T2 |
| 41 | 1+(20.5−35.5i)T2 |
| 43 | 1+(2.5−4.33i)T+(−21.5−37.2i)T2 |
| 47 | 1+13iT−47T2 |
| 53 | 1−12T+53T2 |
| 59 | 1+(8.66+5i)T+(29.5+51.0i)T2 |
| 61 | 1+(−4+6.92i)T+(−30.5−52.8i)T2 |
| 67 | 1+(1.73−i)T+(33.5−58.0i)T2 |
| 71 | 1+(−4.33−2.5i)T+(35.5+61.4i)T2 |
| 73 | 1−10iT−73T2 |
| 79 | 1+4T+79T2 |
| 83 | 1−83T2 |
| 89 | 1+(5.19−3i)T+(44.5−77.0i)T2 |
| 97 | 1+(12.1+7i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.43911695887120971118537771681, −10.64515890454952294155269271635, −9.913185870502105458090272301155, −8.709542587015666102174173117482, −8.512768303978593408171527276184, −6.60071325138595913732005757206, −5.19701047741107606152159079311, −4.42488536811783229246609145604, −3.57961127437682844819302955625, −2.26087770069826664507901085731,
1.74981381815733341569202639170, 2.91353835114745998091092565214, 4.21412522403204438203093364766, 5.91541864476566554398979113211, 6.82805544314088257573520170084, 7.44753880197435840843448491105, 8.316422503449317614447196602139, 9.256399762484528168308855329567, 10.78814160458541141660259805470, 11.86141300282434313190287599116