L(s) = 1 | + 2·2-s − 3.66·3-s + 4·4-s + 8.53·5-s − 7.32·6-s − 4.20·7-s + 8·8-s − 13.5·9-s + 17.0·10-s − 65.3·11-s − 14.6·12-s − 8.40·14-s − 31.2·15-s + 16·16-s − 26.9·17-s − 27.1·18-s − 13.3·19-s + 34.1·20-s + 15.3·21-s − 130.·22-s + 159.·23-s − 29.3·24-s − 52.2·25-s + 148.·27-s − 16.8·28-s − 301.·29-s − 62.5·30-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.705·3-s + 0.5·4-s + 0.763·5-s − 0.498·6-s − 0.226·7-s + 0.353·8-s − 0.502·9-s + 0.539·10-s − 1.79·11-s − 0.352·12-s − 0.160·14-s − 0.538·15-s + 0.250·16-s − 0.383·17-s − 0.355·18-s − 0.161·19-s + 0.381·20-s + 0.159·21-s − 1.26·22-s + 1.44·23-s − 0.249·24-s − 0.417·25-s + 1.05·27-s − 0.113·28-s − 1.92·29-s − 0.380·30-s + ⋯ |
Λ(s)=(=(338s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(338s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−2T |
| 13 | 1 |
good | 3 | 1+3.66T+27T2 |
| 5 | 1−8.53T+125T2 |
| 7 | 1+4.20T+343T2 |
| 11 | 1+65.3T+1.33e3T2 |
| 17 | 1+26.9T+4.91e3T2 |
| 19 | 1+13.3T+6.85e3T2 |
| 23 | 1−159.T+1.21e4T2 |
| 29 | 1+301.T+2.43e4T2 |
| 31 | 1+73.0T+2.97e4T2 |
| 37 | 1+118.T+5.06e4T2 |
| 41 | 1+432.T+6.89e4T2 |
| 43 | 1+356.T+7.95e4T2 |
| 47 | 1−588.T+1.03e5T2 |
| 53 | 1+269.T+1.48e5T2 |
| 59 | 1−230.T+2.05e5T2 |
| 61 | 1+380.T+2.26e5T2 |
| 67 | 1−435.T+3.00e5T2 |
| 71 | 1−65.9T+3.57e5T2 |
| 73 | 1−885.T+3.89e5T2 |
| 79 | 1+385.T+4.93e5T2 |
| 83 | 1+254.T+5.71e5T2 |
| 89 | 1+372.T+7.04e5T2 |
| 97 | 1−1.31e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.83379361544133899419068836958, −10.03740675992481756951953953006, −8.806940937433261807111198860763, −7.54340686659322814899718423354, −6.46492298251966230174502980093, −5.45325304350041968606725447628, −5.07258063890915693944331603274, −3.27645644032136196654995203915, −2.10461573118887613239567151674, 0,
2.10461573118887613239567151674, 3.27645644032136196654995203915, 5.07258063890915693944331603274, 5.45325304350041968606725447628, 6.46492298251966230174502980093, 7.54340686659322814899718423354, 8.806940937433261807111198860763, 10.03740675992481756951953953006, 10.83379361544133899419068836958