Properties

Label 2-338-1.1-c3-0-35
Degree $2$
Conductor $338$
Sign $-1$
Analytic cond. $19.9426$
Root an. cond. $4.46571$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3.66·3-s + 4·4-s + 8.53·5-s − 7.32·6-s − 4.20·7-s + 8·8-s − 13.5·9-s + 17.0·10-s − 65.3·11-s − 14.6·12-s − 8.40·14-s − 31.2·15-s + 16·16-s − 26.9·17-s − 27.1·18-s − 13.3·19-s + 34.1·20-s + 15.3·21-s − 130.·22-s + 159.·23-s − 29.3·24-s − 52.2·25-s + 148.·27-s − 16.8·28-s − 301.·29-s − 62.5·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.705·3-s + 0.5·4-s + 0.763·5-s − 0.498·6-s − 0.226·7-s + 0.353·8-s − 0.502·9-s + 0.539·10-s − 1.79·11-s − 0.352·12-s − 0.160·14-s − 0.538·15-s + 0.250·16-s − 0.383·17-s − 0.355·18-s − 0.161·19-s + 0.381·20-s + 0.159·21-s − 1.26·22-s + 1.44·23-s − 0.249·24-s − 0.417·25-s + 1.05·27-s − 0.113·28-s − 1.92·29-s − 0.380·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338\)    =    \(2 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(19.9426\)
Root analytic conductor: \(4.46571\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 338,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
13 \( 1 \)
good3 \( 1 + 3.66T + 27T^{2} \)
5 \( 1 - 8.53T + 125T^{2} \)
7 \( 1 + 4.20T + 343T^{2} \)
11 \( 1 + 65.3T + 1.33e3T^{2} \)
17 \( 1 + 26.9T + 4.91e3T^{2} \)
19 \( 1 + 13.3T + 6.85e3T^{2} \)
23 \( 1 - 159.T + 1.21e4T^{2} \)
29 \( 1 + 301.T + 2.43e4T^{2} \)
31 \( 1 + 73.0T + 2.97e4T^{2} \)
37 \( 1 + 118.T + 5.06e4T^{2} \)
41 \( 1 + 432.T + 6.89e4T^{2} \)
43 \( 1 + 356.T + 7.95e4T^{2} \)
47 \( 1 - 588.T + 1.03e5T^{2} \)
53 \( 1 + 269.T + 1.48e5T^{2} \)
59 \( 1 - 230.T + 2.05e5T^{2} \)
61 \( 1 + 380.T + 2.26e5T^{2} \)
67 \( 1 - 435.T + 3.00e5T^{2} \)
71 \( 1 - 65.9T + 3.57e5T^{2} \)
73 \( 1 - 885.T + 3.89e5T^{2} \)
79 \( 1 + 385.T + 4.93e5T^{2} \)
83 \( 1 + 254.T + 5.71e5T^{2} \)
89 \( 1 + 372.T + 7.04e5T^{2} \)
97 \( 1 - 1.31e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.83379361544133899419068836958, −10.03740675992481756951953953006, −8.806940937433261807111198860763, −7.54340686659322814899718423354, −6.46492298251966230174502980093, −5.45325304350041968606725447628, −5.07258063890915693944331603274, −3.27645644032136196654995203915, −2.10461573118887613239567151674, 0, 2.10461573118887613239567151674, 3.27645644032136196654995203915, 5.07258063890915693944331603274, 5.45325304350041968606725447628, 6.46492298251966230174502980093, 7.54340686659322814899718423354, 8.806940937433261807111198860763, 10.03740675992481756951953953006, 10.83379361544133899419068836958

Graph of the $Z$-function along the critical line