Properties

Label 2-338-1.1-c3-0-36
Degree $2$
Conductor $338$
Sign $-1$
Analytic cond. $19.9426$
Root an. cond. $4.46571$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 0.405·3-s + 4·4-s − 6.36·5-s + 0.811·6-s + 2.55·7-s + 8·8-s − 26.8·9-s − 12.7·10-s − 26.1·11-s + 1.62·12-s + 5.10·14-s − 2.58·15-s + 16·16-s − 93.7·17-s − 53.6·18-s + 37.2·19-s − 25.4·20-s + 1.03·21-s − 52.2·22-s − 104.·23-s + 3.24·24-s − 84.5·25-s − 21.8·27-s + 10.2·28-s + 249.·29-s − 5.16·30-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.0780·3-s + 0.5·4-s − 0.569·5-s + 0.0552·6-s + 0.137·7-s + 0.353·8-s − 0.993·9-s − 0.402·10-s − 0.715·11-s + 0.0390·12-s + 0.0973·14-s − 0.0444·15-s + 0.250·16-s − 1.33·17-s − 0.702·18-s + 0.449·19-s − 0.284·20-s + 0.0107·21-s − 0.506·22-s − 0.951·23-s + 0.0276·24-s − 0.676·25-s − 0.155·27-s + 0.0688·28-s + 1.59·29-s − 0.0314·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338\)    =    \(2 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(19.9426\)
Root analytic conductor: \(4.46571\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 338,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
13 \( 1 \)
good3 \( 1 - 0.405T + 27T^{2} \)
5 \( 1 + 6.36T + 125T^{2} \)
7 \( 1 - 2.55T + 343T^{2} \)
11 \( 1 + 26.1T + 1.33e3T^{2} \)
17 \( 1 + 93.7T + 4.91e3T^{2} \)
19 \( 1 - 37.2T + 6.85e3T^{2} \)
23 \( 1 + 104.T + 1.21e4T^{2} \)
29 \( 1 - 249.T + 2.43e4T^{2} \)
31 \( 1 + 278.T + 2.97e4T^{2} \)
37 \( 1 - 10.9T + 5.06e4T^{2} \)
41 \( 1 - 371.T + 6.89e4T^{2} \)
43 \( 1 + 413.T + 7.95e4T^{2} \)
47 \( 1 + 238.T + 1.03e5T^{2} \)
53 \( 1 + 424.T + 1.48e5T^{2} \)
59 \( 1 - 774.T + 2.05e5T^{2} \)
61 \( 1 + 123.T + 2.26e5T^{2} \)
67 \( 1 - 881.T + 3.00e5T^{2} \)
71 \( 1 + 118.T + 3.57e5T^{2} \)
73 \( 1 + 209.T + 3.89e5T^{2} \)
79 \( 1 + 532.T + 4.93e5T^{2} \)
83 \( 1 - 376.T + 5.71e5T^{2} \)
89 \( 1 + 42.6T + 7.04e5T^{2} \)
97 \( 1 + 639.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.05900312009442295955224518681, −9.835375926414247106941075482605, −8.529225443376204994208338109994, −7.83267649050432889229677083006, −6.64644971811449574893379555639, −5.59057682703643727938770927596, −4.56836720316319430840028186609, −3.39292206670555417064824648698, −2.21994418057166274676689482118, 0, 2.21994418057166274676689482118, 3.39292206670555417064824648698, 4.56836720316319430840028186609, 5.59057682703643727938770927596, 6.64644971811449574893379555639, 7.83267649050432889229677083006, 8.529225443376204994208338109994, 9.835375926414247106941075482605, 11.05900312009442295955224518681

Graph of the $Z$-function along the critical line