L(s) = 1 | − 2i·2-s + 0.405·3-s − 4·4-s + 6.36i·5-s − 0.811i·6-s + 2.55i·7-s + 8i·8-s − 26.8·9-s + 12.7·10-s − 26.1i·11-s − 1.62·12-s + 5.10·14-s + 2.58i·15-s + 16·16-s + 93.7·17-s + 53.6i·18-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 0.0780·3-s − 0.5·4-s + 0.569i·5-s − 0.0552i·6-s + 0.137i·7-s + 0.353i·8-s − 0.993·9-s + 0.402·10-s − 0.715i·11-s − 0.0390·12-s + 0.0973·14-s + 0.0444i·15-s + 0.250·16-s + 1.33·17-s + 0.702i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.722 + 0.691i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.722 + 0.691i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.698370825\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.698370825\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 2iT \) |
| 13 | \( 1 \) |
good | 3 | \( 1 - 0.405T + 27T^{2} \) |
| 5 | \( 1 - 6.36iT - 125T^{2} \) |
| 7 | \( 1 - 2.55iT - 343T^{2} \) |
| 11 | \( 1 + 26.1iT - 1.33e3T^{2} \) |
| 17 | \( 1 - 93.7T + 4.91e3T^{2} \) |
| 19 | \( 1 + 37.2iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 104.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 249.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 278. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 10.9iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 371. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 413.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 238. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 424.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 774. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 123.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 881. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 118. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 209. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 532.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 376. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 42.6iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 639. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.86603557112708849793568247720, −10.42778304327317542383022908900, −9.070268192690825095964093058144, −8.486487065459823048382529734529, −7.22281961381026513983673183433, −5.97375981480218879073122648243, −4.98648871879484606777859061549, −3.33872817404783937145454828001, −2.74284704546572871565166159698, −0.873667206228147517130389355106,
0.937018367015572268671032235307, 2.91693750457705846337818534357, 4.39954187606123304998138240213, 5.36771328300417166017375656125, 6.31205144556500458354625524485, 7.56011531358369396022832223982, 8.279651033657509543820840918535, 9.236175173491493525521584389571, 10.05682316083340078986685238240, 11.28091581496642658292213094913