L(s) = 1 | − 2i·2-s + 0.405·3-s − 4·4-s + 6.36i·5-s − 0.811i·6-s + 2.55i·7-s + 8i·8-s − 26.8·9-s + 12.7·10-s − 26.1i·11-s − 1.62·12-s + 5.10·14-s + 2.58i·15-s + 16·16-s + 93.7·17-s + 53.6i·18-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 0.0780·3-s − 0.5·4-s + 0.569i·5-s − 0.0552i·6-s + 0.137i·7-s + 0.353i·8-s − 0.993·9-s + 0.402·10-s − 0.715i·11-s − 0.0390·12-s + 0.0973·14-s + 0.0444i·15-s + 0.250·16-s + 1.33·17-s + 0.702i·18-s + ⋯ |
Λ(s)=(=(338s/2ΓC(s)L(s)(0.722+0.691i)Λ(4−s)
Λ(s)=(=(338s/2ΓC(s+3/2)L(s)(0.722+0.691i)Λ(1−s)
Degree: |
2 |
Conductor: |
338
= 2⋅132
|
Sign: |
0.722+0.691i
|
Analytic conductor: |
19.9426 |
Root analytic conductor: |
4.46571 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ338(337,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 338, ( :3/2), 0.722+0.691i)
|
Particular Values
L(2) |
≈ |
1.698370825 |
L(21) |
≈ |
1.698370825 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+2iT |
| 13 | 1 |
good | 3 | 1−0.405T+27T2 |
| 5 | 1−6.36iT−125T2 |
| 7 | 1−2.55iT−343T2 |
| 11 | 1+26.1iT−1.33e3T2 |
| 17 | 1−93.7T+4.91e3T2 |
| 19 | 1+37.2iT−6.85e3T2 |
| 23 | 1−104.T+1.21e4T2 |
| 29 | 1−249.T+2.43e4T2 |
| 31 | 1−278.iT−2.97e4T2 |
| 37 | 1−10.9iT−5.06e4T2 |
| 41 | 1+371.iT−6.89e4T2 |
| 43 | 1−413.T+7.95e4T2 |
| 47 | 1+238.iT−1.03e5T2 |
| 53 | 1+424.T+1.48e5T2 |
| 59 | 1−774.iT−2.05e5T2 |
| 61 | 1+123.T+2.26e5T2 |
| 67 | 1+881.iT−3.00e5T2 |
| 71 | 1−118.iT−3.57e5T2 |
| 73 | 1+209.iT−3.89e5T2 |
| 79 | 1+532.T+4.93e5T2 |
| 83 | 1+376.iT−5.71e5T2 |
| 89 | 1+42.6iT−7.04e5T2 |
| 97 | 1−639.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.86603557112708849793568247720, −10.42778304327317542383022908900, −9.070268192690825095964093058144, −8.486487065459823048382529734529, −7.22281961381026513983673183433, −5.97375981480218879073122648243, −4.98648871879484606777859061549, −3.33872817404783937145454828001, −2.74284704546572871565166159698, −0.873667206228147517130389355106,
0.937018367015572268671032235307, 2.91693750457705846337818534357, 4.39954187606123304998138240213, 5.36771328300417166017375656125, 6.31205144556500458354625524485, 7.56011531358369396022832223982, 8.279651033657509543820840918535, 9.236175173491493525521584389571, 10.05682316083340078986685238240, 11.28091581496642658292213094913