L(s) = 1 | + 6·2-s + 12·3-s + 12·4-s + 24·5-s + 72·6-s + 27·7-s − 16·8-s + 108·9-s + 144·10-s − 82·11-s + 144·12-s + 162·14-s + 288·15-s − 144·16-s + 90·17-s + 648·18-s − 130·19-s + 288·20-s + 324·21-s − 492·22-s − 19·23-s − 192·24-s − 148·25-s + 890·27-s + 324·28-s + 101·29-s + 1.72e3·30-s + ⋯ |
L(s) = 1 | + 2.12·2-s + 2.30·3-s + 3/2·4-s + 2.14·5-s + 4.89·6-s + 1.45·7-s − 0.707·8-s + 4·9-s + 4.55·10-s − 2.24·11-s + 3.46·12-s + 3.09·14-s + 4.95·15-s − 9/4·16-s + 1.28·17-s + 8.48·18-s − 1.56·19-s + 3.21·20-s + 3.36·21-s − 4.76·22-s − 0.172·23-s − 1.63·24-s − 1.18·25-s + 6.34·27-s + 2.18·28-s + 0.646·29-s + 10.5·30-s + ⋯ |
Λ(s)=(=((26⋅1312)s/2ΓC(s)6L(s)Λ(4−s)
Λ(s)=(=((26⋅1312)s/2ΓC(s+3/2)6L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
75.83792900 |
L(21) |
≈ |
75.83792900 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1−pT+p2T2)3 |
| 13 | 1 |
good | 3 | 1−4pT+4p2T2−26T3+376pT4−272p3T5+22687T6−272p6T7+376p7T8−26p9T9+4p14T10−4p16T11+p18T12 |
| 5 | (1−12T+58pT2−2231T3+58p4T4−12p6T5+p9T6)2 |
| 7 | 1−27T−242T2+1459pT3+117983T4−2878426T5+3332855T6−2878426p3T7+117983p6T8+1459p10T9−242p12T10−27p15T11+p18T12 |
| 11 | 1+82T+172pT2−7922T3+346846T4+66936450T5+2560930403T6+66936450p3T7+346846p6T8−7922p9T9+172p13T10+82p15T11+p18T12 |
| 17 | 1−90T−5468T2+393226T3+44785470T4−1125379354T5−211247539689T6−1125379354p3T7+44785470p6T8+393226p9T9−5468p12T10−90p15T11+p18T12 |
| 19 | 1+130T+492T2−1280422T3−65195038T4+4858964058T5+916633832443T6+4858964058p3T7−65195038p6T8−1280422p9T9+492p12T10+130p15T11+p18T12 |
| 23 | 1+19T−17379T2−1795946T3+78601463T4+13530427071T5+857245646806T6+13530427071p3T7+78601463p6T8−1795946p9T9−17379p12T10+19p15T11+p18T12 |
| 29 | 1−101T+9670T2+2392827T3−136214727T4−58110677102T5+24435911693829T6−58110677102p3T7−136214727p6T8+2392827p9T9+9670p12T10−101p15T11+p18T12 |
| 31 | (1−519T+168527T2−34325015T3+168527p3T4−519p6T5+p9T6)2 |
| 37 | 1+84T−141032T2−4641854T3+13711541948T4+220099751228T5−796061158324453T6+220099751228p3T7+13711541948p6T8−4641854p9T9−141032p12T10+84p15T11+p18T12 |
| 41 | 1+187T−18745T2−1163696T3−1864796807T4−195267953691T5+321213047237726T6−195267953691p3T7−1864796807p6T8−1163696p9T9−18745p12T10+187p15T11+p18T12 |
| 43 | 1−1205T+731136T2−357194599T3+154200549383T4−53845297050762T5+15910224576330043T6−53845297050762p3T7+154200549383p6T8−357194599p9T9+731136p12T10−1205p15T11+p18T12 |
| 47 | (1+536T+236110T2+85169985T3+236110p3T4+536p6T5+p9T6)2 |
| 53 | (1+1095T+839313T2+371911379T3+839313p3T4+1095p6T5+p9T6)2 |
| 59 | 1−1413T+791881T2−395784094T3+4760265513pT4−147325234570781T5+61745012937499398T6−147325234570781p3T7+4760265513p7T8−395784094p9T9+791881p12T10−1413p15T11+p18T12 |
| 61 | 1−1108T+195280T2−81146578T3+242730039476T4−86381104403572T5+569801340677051T6−86381104403572p3T7+242730039476p6T8−81146578p9T9+195280p12T10−1108p15T11+p18T12 |
| 67 | 1−1605T+910660T2−521034463T3+545679629225T4−329190135263360T5+144884674066779755T6−329190135263360p3T7+545679629225p6T8−521034463p9T9+910660p12T10−1605p15T11+p18T12 |
| 71 | 1−909T−188832T2+363557137T3+82513282683T4−108794514090066T5+30677817845635031T6−108794514090066p3T7+82513282683p6T8+363557137p9T9−188832p12T10−909p15T11+p18T12 |
| 73 | (1−287T+330383T2−44761521T3+330383p3T4−287p6T5+p9T6)2 |
| 79 | (1+1961T+2641773T2+2147763857T3+2641773p3T4+1961p6T5+p9T6)2 |
| 83 | (1−191T+1581331T2−188435781T3+1581331p3T4−191p6T5+p9T6)2 |
| 89 | 1+1091T−1221116T2−467120403T3+2424941163801T4+568092710973530T5−1590782774768604519T6+568092710973530p3T7+2424941163801p6T8−467120403p9T9−1221116p12T10+1091p15T11+p18T12 |
| 97 | 1−947T−1184994T2+1028052401T3+1013625696203T4−312418983925740T5−932711772529957343T6−312418983925740p3T7+1013625696203p6T8+1028052401p9T9−1184994p12T10−947p15T11+p18T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.99497966750363648610796196676, −5.33616711429272316411229581420, −5.29163182565577810640190693331, −5.09629228600917135600808059315, −4.98082721206099078522670748968, −4.92444598129373887976544924042, −4.85033077413676610820447171656, −4.37330058479914445743904206286, −4.12613321646576111564151737233, −4.05012858621967743065775819574, −4.03806535787713110397928422795, −3.78404999486496844735709459735, −3.59819301963575328488713784598, −2.99299971755671735902898490000, −2.77958193027309022730476705826, −2.70555808031958039760688698305, −2.60061189598415159541384975493, −2.52171916662755754108608889458, −2.37777608752468918341659120484, −1.92554445152553832971210116648, −1.59115118833607130762161677267, −1.45869956145610847792304300067, −1.18406414129596056281812996160, −0.814021371173117294748187586922, −0.29577942596693607327655230950,
0.29577942596693607327655230950, 0.814021371173117294748187586922, 1.18406414129596056281812996160, 1.45869956145610847792304300067, 1.59115118833607130762161677267, 1.92554445152553832971210116648, 2.37777608752468918341659120484, 2.52171916662755754108608889458, 2.60061189598415159541384975493, 2.70555808031958039760688698305, 2.77958193027309022730476705826, 2.99299971755671735902898490000, 3.59819301963575328488713784598, 3.78404999486496844735709459735, 4.03806535787713110397928422795, 4.05012858621967743065775819574, 4.12613321646576111564151737233, 4.37330058479914445743904206286, 4.85033077413676610820447171656, 4.92444598129373887976544924042, 4.98082721206099078522670748968, 5.09629228600917135600808059315, 5.29163182565577810640190693331, 5.33616711429272316411229581420, 5.99497966750363648610796196676
Plot not available for L-functions of degree greater than 10.