L(s) = 1 | + (−1 + 1.73i)2-s + (−5.00 + 8.66i)3-s + (−1.99 − 3.46i)4-s − 13.8·5-s + (−10.0 − 17.3i)6-s + (0.131 + 0.227i)7-s + 7.99·8-s + (−36.5 − 63.3i)9-s + (13.8 − 23.9i)10-s + (−20.0 + 34.6i)11-s + 40.0·12-s − 0.524·14-s + (69.1 − 119. i)15-s + (−8 + 13.8i)16-s + (−39.8 − 69.0i)17-s + 146.·18-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.963 + 1.66i)3-s + (−0.249 − 0.433i)4-s − 1.23·5-s + (−0.680 − 1.17i)6-s + (0.00708 + 0.0122i)7-s + 0.353·8-s + (−1.35 − 2.34i)9-s + (0.436 − 0.756i)10-s + (−0.548 + 0.949i)11-s + 0.963·12-s − 0.0100·14-s + (1.18 − 2.06i)15-s + (−0.125 + 0.216i)16-s + (−0.568 − 0.985i)17-s + 1.91·18-s + ⋯ |
Λ(s)=(=(338s/2ΓC(s)L(s)(0.611−0.791i)Λ(4−s)
Λ(s)=(=(338s/2ΓC(s+3/2)L(s)(0.611−0.791i)Λ(1−s)
Degree: |
2 |
Conductor: |
338
= 2⋅132
|
Sign: |
0.611−0.791i
|
Analytic conductor: |
19.9426 |
Root analytic conductor: |
4.46571 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ338(191,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 338, ( :3/2), 0.611−0.791i)
|
Particular Values
L(2) |
≈ |
0.2727391137 |
L(21) |
≈ |
0.2727391137 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1−1.73i)T |
| 13 | 1 |
good | 3 | 1+(5.00−8.66i)T+(−13.5−23.3i)T2 |
| 5 | 1+13.8T+125T2 |
| 7 | 1+(−0.131−0.227i)T+(−171.5+297.i)T2 |
| 11 | 1+(20.0−34.6i)T+(−665.5−1.15e3i)T2 |
| 17 | 1+(39.8+69.0i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(−11.2−19.5i)T+(−3.42e3+5.94e3i)T2 |
| 23 | 1+(−32.7+56.7i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+(20.0−34.7i)T+(−1.21e4−2.11e4i)T2 |
| 31 | 1+113.T+2.97e4T2 |
| 37 | 1+(60.5−104.i)T+(−2.53e4−4.38e4i)T2 |
| 41 | 1+(198.−343.i)T+(−3.44e4−5.96e4i)T2 |
| 43 | 1+(−137.−238.i)T+(−3.97e4+6.88e4i)T2 |
| 47 | 1+440.T+1.03e5T2 |
| 53 | 1+615.T+1.48e5T2 |
| 59 | 1+(−115.−199.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(−54.7−94.8i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(−110.+191.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1+(−161.−279.i)T+(−1.78e5+3.09e5i)T2 |
| 73 | 1+323.T+3.89e5T2 |
| 79 | 1−743.T+4.93e5T2 |
| 83 | 1−539.T+5.71e5T2 |
| 89 | 1+(−632.+1.09e3i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1+(163.+282.i)T+(−4.56e5+7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.20558828179706041019016456171, −10.22359272260450134354508409751, −9.546018803563917546602329984076, −8.564721314692087588023115697690, −7.41440033446755901545908698119, −6.34309796833316313935361459711, −4.95684878472353706415164311882, −4.61354576574586526874163579798, −3.37202537418776790414338727218, −0.23398107623857426181468877493,
0.61157026520456943401805004059, 2.00578520986497661156765611700, 3.51942958877205766270335195711, 5.13573600330330407670012301788, 6.28112027910182137160925939962, 7.37491140334800760700501252003, 7.965683845798451598853938680737, 8.770802337384516801531145246427, 10.70618873762043459410769710204, 11.12243141640079619532216087920