L(s) = 1 | + (−1 − 1.73i)2-s + (−1.67 − 2.90i)3-s + (−1.99 + 3.46i)4-s + 6.80·5-s + (−3.35 + 5.81i)6-s + (−7.76 + 13.4i)7-s + 7.99·8-s + (7.86 − 13.6i)9-s + (−6.80 − 11.7i)10-s + (−9.80 − 16.9i)11-s + 13.4·12-s + 31.0·14-s + (−11.4 − 19.7i)15-s + (−8 − 13.8i)16-s + (−62.9 + 109. i)17-s − 31.4·18-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.323 − 0.559i)3-s + (−0.249 + 0.433i)4-s + 0.608·5-s + (−0.228 + 0.395i)6-s + (−0.419 + 0.726i)7-s + 0.353·8-s + (0.291 − 0.504i)9-s + (−0.215 − 0.372i)10-s + (−0.268 − 0.465i)11-s + 0.323·12-s + 0.593·14-s + (−0.196 − 0.340i)15-s + (−0.125 − 0.216i)16-s + (−0.898 + 1.55i)17-s − 0.411·18-s + ⋯ |
Λ(s)=(=(338s/2ΓC(s)L(s)(−0.562−0.826i)Λ(4−s)
Λ(s)=(=(338s/2ΓC(s+3/2)L(s)(−0.562−0.826i)Λ(1−s)
Degree: |
2 |
Conductor: |
338
= 2⋅132
|
Sign: |
−0.562−0.826i
|
Analytic conductor: |
19.9426 |
Root analytic conductor: |
4.46571 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ338(315,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 338, ( :3/2), −0.562−0.826i)
|
Particular Values
L(2) |
≈ |
0.1101502278 |
L(21) |
≈ |
0.1101502278 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1+1.73i)T |
| 13 | 1 |
good | 3 | 1+(1.67+2.90i)T+(−13.5+23.3i)T2 |
| 5 | 1−6.80T+125T2 |
| 7 | 1+(7.76−13.4i)T+(−171.5−297.i)T2 |
| 11 | 1+(9.80+16.9i)T+(−665.5+1.15e3i)T2 |
| 17 | 1+(62.9−109.i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(−48.6+84.1i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(64.9+112.i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+(73.9+128.i)T+(−1.21e4+2.11e4i)T2 |
| 31 | 1+172.T+2.97e4T2 |
| 37 | 1+(−110.−191.i)T+(−2.53e4+4.38e4i)T2 |
| 41 | 1+(−14.0−24.3i)T+(−3.44e4+5.96e4i)T2 |
| 43 | 1+(180.−313.i)T+(−3.97e4−6.88e4i)T2 |
| 47 | 1−456.T+1.03e5T2 |
| 53 | 1+643.T+1.48e5T2 |
| 59 | 1+(155.−269.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(405.−702.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(3.50+6.06i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1+(−425.+736.i)T+(−1.78e5−3.09e5i)T2 |
| 73 | 1+1.12e3T+3.89e5T2 |
| 79 | 1−278.T+4.93e5T2 |
| 83 | 1+417.T+5.71e5T2 |
| 89 | 1+(−162.−280.i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1+(−41.0+71.0i)T+(−4.56e5−7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.55570420037882767777513225729, −9.542516349291478801454044487569, −8.874584864688726719661325050938, −7.75934521789105466092377294897, −6.41727060226573768031153113172, −5.85988459107133102787513502323, −4.21885308652593982300053284370, −2.75819790416624013943584401189, −1.61285183821193435692557647651, −0.04414515973598885445615711948,
1.87286468899955480061164888706, 3.80626594586676899720621004984, 5.00987581563364782378873945088, 5.78408717750162106831263671940, 7.13292105080760607778089471467, 7.65343855409383640895052670045, 9.260422008775249771007609980278, 9.763633652341901251984564124986, 10.52516872485987633301080756559, 11.42055664625180150492615943610