L(s) = 1 | + 12·2-s − 9·3-s + 60·4-s − 36·5-s − 108·6-s + 25·7-s + 112·8-s + 65·9-s − 432·10-s + 37·11-s − 540·12-s + 300·14-s + 324·15-s − 336·16-s − 99·17-s + 780·18-s − 81·19-s − 2.16e3·20-s − 225·21-s + 444·22-s − 267·23-s − 1.00e3·24-s + 266·25-s − 58·27-s + 1.50e3·28-s + 119·29-s + 3.88e3·30-s + ⋯ |
L(s) = 1 | + 4.24·2-s − 1.73·3-s + 15/2·4-s − 3.21·5-s − 7.34·6-s + 1.34·7-s + 4.94·8-s + 2.40·9-s − 13.6·10-s + 1.01·11-s − 12.9·12-s + 5.72·14-s + 5.57·15-s − 5.25·16-s − 1.41·17-s + 10.2·18-s − 0.978·19-s − 24.1·20-s − 2.33·21-s + 4.30·22-s − 2.42·23-s − 8.57·24-s + 2.12·25-s − 0.413·27-s + 10.1·28-s + 0.761·29-s + 23.6·30-s + ⋯ |
Λ(s)=(=((212⋅1324)s/2ΓC(s)12L(s)Λ(4−s)
Λ(s)=(=((212⋅1324)s/2ΓC(s+3/2)12L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.8583291842 |
L(21) |
≈ |
0.8583291842 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1−pT+p2T2)6 |
| 13 | 1 |
good | 3 | 1+p2T+16T2−383T3−2903T4−1330pT5+9848p2T6+594275T7+114521pT8−15120890T9−65767805T10+130939027T11+2123613139T12+130939027p3T13−65767805p6T14−15120890p9T15+114521p13T16+594275p15T17+9848p20T18−1330p22T19−2903p24T20−383p27T21+16p30T22+p35T23+p36T24 |
| 5 | (1+18T+353T2+1063pT3+15993pT4+1003083T5+12801634T6+1003083p3T7+15993p7T8+1063p10T9+353p12T10+18p15T11+p18T12)2 |
| 7 | 1−25T−267T2+1544pT3−41021T4−1296635T5+23995119T6+9910501pT7−1232685738pT8−31346785682pT9+154528034457p2T10+1657960494149p2T11−89824498888557p2T12+1657960494149p5T13+154528034457p8T14−31346785682p10T15−1232685738p13T16+9910501p16T17+23995119p18T18−1296635p21T19−41021p24T20+1544p28T21−267p30T22−25p33T23+p36T24 |
| 11 | 1−37T−3374T2+90165T3+6920025T4−72282084T5−9465779646T6−122761204227T7+992732213841pT8+2107273243932p2T9−5376348087443175T10−186152687993983949T11+1687873828970897175T12−186152687993983949p3T13−5376348087443175p6T14+2107273243932p11T15+992732213841p13T16−122761204227p15T17−9465779646p18T18−72282084p21T19+6920025p24T20+90165p27T21−3374p30T22−37p33T23+p36T24 |
| 17 | 1+99T−5434T2−1327755T3−64109215T4+2302353130T5+284397483536T6+14376654383487T7+1730888463481815T8+160829292478556350T9+2491616674911046785T10−92⋯33T11−97⋯91T12−92⋯33p3T13+2491616674911046785p6T14+160829292478556350p9T15+1730888463481815p12T16+14376654383487p15T17+284397483536p18T18+2302353130p21T19−64109215p24T20−1327755p27T21−5434p30T22+99p33T23+p36T24 |
| 19 | 1+81T−14726T2−186209T3+166884549T4−6779420944T5−866610386870T6+89433153834823T7+664547746074283T8−502153099717971364T9+11987237177864360773T10+56646495765690815391pT11−88⋯53T12+56646495765690815391p4T13+11987237177864360773p6T14−502153099717971364p9T15+664547746074283p12T16+89433153834823p15T17−866610386870p18T18−6779420944p21T19+166884549p24T20−186209p27T21−14726p30T22+81p33T23+p36T24 |
| 23 | 1+267T+5996T2−5270773T3−672443396T4−31932625905T5−1227012468944T6+664024075258251T7+222364660120074076T8+18529838508574461255T9−82⋯32T10−95⋯35pT11−20⋯18T12−95⋯35p4T13−82⋯32p6T14+18529838508574461255p9T15+222364660120074076p12T16+664024075258251p15T17−1227012468944p18T18−31932625905p21T19−672443396p24T20−5270773p27T21+5996p30T22+267p33T23+p36T24 |
| 29 | 1−119T−110183T2+8876420T3+7293704953T4−379237642413T5−340028891349473T6+10660672822726647T7+12332118877300770900T8−19⋯14T9−37⋯75T10+63⋯69pT11+11⋯75p2T12+63⋯69p4T13−37⋯75p6T14−19⋯14p9T15+12332118877300770900p12T16+10660672822726647p15T17−340028891349473p18T18−379237642413p21T19+7293704953p24T20+8876420p27T21−110183p30T22−119p33T23+p36T24 |
| 31 | (1−625T+316140T2−104356466T3+29721828071T4−6530570693913T5+1262869136265616T6−6530570693913p3T7+29721828071p6T8−104356466p9T9+316140p12T10−625p15T11+p18T12)2 |
| 37 | 1−274T−172179T2+31298256T3+20598937694T4−1795401545956T5−1915135012258020T6+108121656871938888T7+13⋯13T8−43⋯40T9−83⋯93T10+63⋯30T11+46⋯61T12+63⋯30p3T13−83⋯93p6T14−43⋯40p9T15+13⋯13p12T16+108121656871938888p15T17−1915135012258020p18T18−1795401545956p21T19+20598937694p24T20+31298256p27T21−172179p30T22−274p33T23+p36T24 |
| 41 | 1−1140T+431902T2−53291206T3+18188754925T4−16860355235744T5+5182958888100297T6−1001584729781787693T7+9902716607030270666pT8−12⋯62T9+19⋯99T10−81⋯15T11+33⋯16T12−81⋯15p3T13+19⋯99p6T14−12⋯62p9T15+9902716607030270666p13T16−1001584729781787693p15T17+5182958888100297p18T18−16860355235744p21T19+18188754925p24T20−53291206p27T21+431902p30T22−1140p33T23+p36T24 |
| 43 | 1+428T−16653T2−65902532T3−28639656928T4−5977021820724T5+249322836785029T6+859861367196461312T7+40⋯87T8+83⋯00T9−29⋯48T10−78⋯64T11−30⋯75T12−78⋯64p3T13−29⋯48p6T14+83⋯00p9T15+40⋯87p12T16+859861367196461312p15T17+249322836785029p18T18−5977021820724p21T19−28639656928p24T20−65902532p27T21−16653p30T22+428p33T23+p36T24 |
| 47 | (1−986T+712667T2−325045705T3+134208823841T4−44205691637095T5+15291628070110878T6−44205691637095p3T7+134208823841p6T8−325045705p9T9+712667p12T10−986p15T11+p18T12)2 |
| 53 | (1−89T+149636T2+19578912T3+11883866543T4−8498293720903T5+5004078025030288T6−8498293720903p3T7+11883866543p6T8+19578912p9T9+149636p12T10−89p15T11+p18T12)2 |
| 59 | 1−1088T+328780T2+90009146T3−84336779359T4+13283513005596T5+21739034235208103T6−17322876409308491411T7+17⋯02T8+27⋯32T9−61⋯71T10−47⋯91T11+35⋯96T12−47⋯91p3T13−61⋯71p6T14+27⋯32p9T15+17⋯02p12T16−17322876409308491411p15T17+21739034235208103p18T18+13283513005596p21T19−84336779359p24T20+90009146p27T21+328780p30T22−1088p33T23+p36T24 |
| 61 | 1+1704T+964913T2+32814990T3−190132450110T4−105404733375058T5−40545666342004564T6+2060628600521217352T7+18⋯69T8+88⋯24T9−33⋯05T10−16⋯30T11−87⋯63T12−16⋯30p3T13−33⋯05p6T14+88⋯24p9T15+18⋯69p12T16+2060628600521217352p15T17−40545666342004564p18T18−105404733375058p21T19−190132450110p24T20+32814990p27T21+964913p30T22+1704p33T23+p36T24 |
| 67 | 1+1692T+127351T2−843881488T3+362460636146T4+759339717368988T5−94435239939881877T6−20⋯64T7+15⋯87T8+89⋯64T9−49⋯48T10−19⋯86T11+25⋯73T12−19⋯86p3T13−49⋯48p6T14+89⋯64p9T15+15⋯87p12T16−20⋯64p15T17−94435239939881877p18T18+759339717368988p21T19+362460636146p24T20−843881488p27T21+127351p30T22+1692p33T23+p36T24 |
| 71 | 1+1221T−222229T2−229445802T3+548429440873T4+98641092965829T5−178758364328736769T6+98487688450745149485T7+64⋯56T8−32⋯66T9+14⋯11T10+13⋯13T11−24⋯05T12+13⋯13p3T13+14⋯11p6T14−32⋯66p9T15+64⋯56p12T16+98487688450745149485p15T17−178758364328736769p18T18+98641092965829p21T19+548429440873p24T20−229445802p27T21−222229p30T22+1221p33T23+p36T24 |
| 73 | (1−1554T+2675277T2−2821078736T3+2754872512643T4−2120598772053916T5+1451353422113036309T6−2120598772053916p3T7+2754872512643p6T8−2821078736p9T9+2675277p12T10−1554p15T11+p18T12)2 |
| 79 | (1+875T+2505744T2+1612380868T3+2680533156433T4+1358001363523637T5+1672684167171147060T6+1358001363523637p3T7+2680533156433p6T8+1612380868p9T9+2505744p12T10+875p15T11+p18T12)2 |
| 83 | (1−126T+1578473T2−79217558T3+1520212835457T4+29472962128638T5+980791484443862659T6+29472962128638p3T7+1520212835457p6T8−79217558p9T9+1578473p12T10−126p15T11+p18T12)2 |
| 89 | 1+374T−2168759T2−167755306T3+2757626355714T4−328578956137010T5−1822411905315756507T6+86⋯84T7+43⋯35T8−67⋯06T9+62⋯08T10+24⋯06T11−70⋯11T12+24⋯06p3T13+62⋯08p6T14−67⋯06p9T15+43⋯35p12T16+86⋯84p15T17−1822411905315756507p18T18−328578956137010p21T19+2757626355714p24T20−167755306p27T21−2168759p30T22+374p33T23+p36T24 |
| 97 | 1+330T−4456453T2−2135265822T3+11088575098674T4+5879616897388588T5−18416879164626935101T6−94⋯10T7+23⋯93T8+91⋯58T9−24⋯18T10−36⋯34T11+22⋯29T12−36⋯34p3T13−24⋯18p6T14+91⋯58p9T15+23⋯93p12T16−94⋯10p15T17−18416879164626935101p18T18+5879616897388588p21T19+11088575098674p24T20−2135265822p27T21−4456453p30T22+330p33T23+p36T24 |
show more | |
show less | |
L(s)=p∏ j=1∏24(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.53237886113411524340728771355, −3.37679876248029380780868077252, −3.29967630988982248644577459690, −3.24233964973641692981141942281, −3.08443732134004839722248129114, −2.81992668026463742374165397079, −2.72526529883301546338933083387, −2.64352631567657573806976756859, −2.61336623161907359077961984679, −2.57762586093683013153948980981, −2.32778708963850150562451539333, −2.23225478123826717330491205753, −2.01929257029529925835906499601, −1.99898084331206432604088252998, −1.70580105612999719203534041685, −1.67998580616428711872636420873, −1.33985306769273469520210488402, −0.903329723735886571259340563529, −0.882273031208986115956641445603, −0.858427081618626560424266431864, −0.75887645925424578169659197639, −0.63667427378560946888801301842, −0.56684348546714581482050626667, −0.48604128536228963792787890561, −0.02068279098380190777965778585,
0.02068279098380190777965778585, 0.48604128536228963792787890561, 0.56684348546714581482050626667, 0.63667427378560946888801301842, 0.75887645925424578169659197639, 0.858427081618626560424266431864, 0.882273031208986115956641445603, 0.903329723735886571259340563529, 1.33985306769273469520210488402, 1.67998580616428711872636420873, 1.70580105612999719203534041685, 1.99898084331206432604088252998, 2.01929257029529925835906499601, 2.23225478123826717330491205753, 2.32778708963850150562451539333, 2.57762586093683013153948980981, 2.61336623161907359077961984679, 2.64352631567657573806976756859, 2.72526529883301546338933083387, 2.81992668026463742374165397079, 3.08443732134004839722248129114, 3.24233964973641692981141942281, 3.29967630988982248644577459690, 3.37679876248029380780868077252, 3.53237886113411524340728771355
Plot not available for L-functions of degree greater than 10.