Properties

Label 2-338-13.4-c3-0-32
Degree 22
Conductor 338338
Sign 0.9780.207i-0.978 - 0.207i
Analytic cond. 19.942619.9426
Root an. cond. 4.465714.46571
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.73 − i)2-s + (−0.202 + 0.351i)3-s + (1.99 + 3.46i)4-s − 6.36i·5-s + (0.702 − 0.405i)6-s + (−2.20 + 1.27i)7-s − 7.99i·8-s + (13.4 + 23.2i)9-s + (−6.36 + 11.0i)10-s + (−22.6 − 13.0i)11-s − 1.62·12-s + 5.10·14-s + (2.23 + 1.29i)15-s + (−8 + 13.8i)16-s + (−46.8 − 81.1i)17-s − 53.6i·18-s + ⋯
L(s)  = 1  + (−0.612 − 0.353i)2-s + (−0.0390 + 0.0676i)3-s + (0.249 + 0.433i)4-s − 0.569i·5-s + (0.0478 − 0.0276i)6-s + (−0.119 + 0.0688i)7-s − 0.353i·8-s + (0.496 + 0.860i)9-s + (−0.201 + 0.348i)10-s + (−0.620 − 0.357i)11-s − 0.0390·12-s + 0.0973·14-s + (0.0384 + 0.0222i)15-s + (−0.125 + 0.216i)16-s + (−0.668 − 1.15i)17-s − 0.702i·18-s + ⋯

Functional equation

Λ(s)=(338s/2ΓC(s)L(s)=((0.9780.207i)Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.978 - 0.207i)\, \overline{\Lambda}(4-s) \end{aligned}
Λ(s)=(338s/2ΓC(s+3/2)L(s)=((0.9780.207i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.978 - 0.207i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 338338    =    21322 \cdot 13^{2}
Sign: 0.9780.207i-0.978 - 0.207i
Analytic conductor: 19.942619.9426
Root analytic conductor: 4.465714.46571
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: χ338(147,)\chi_{338} (147, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 338, ( :3/2), 0.9780.207i)(2,\ 338,\ (\ :3/2),\ -0.978 - 0.207i)

Particular Values

L(2)L(2) \approx 0.17192986710.1719298671
L(12)L(\frac12) \approx 0.17192986710.1719298671
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(1.73+i)T 1 + (1.73 + i)T
13 1 1
good3 1+(0.2020.351i)T+(13.523.3i)T2 1 + (0.202 - 0.351i)T + (-13.5 - 23.3i)T^{2}
5 1+6.36iT125T2 1 + 6.36iT - 125T^{2}
7 1+(2.201.27i)T+(171.5297.i)T2 1 + (2.20 - 1.27i)T + (171.5 - 297. i)T^{2}
11 1+(22.6+13.0i)T+(665.5+1.15e3i)T2 1 + (22.6 + 13.0i)T + (665.5 + 1.15e3i)T^{2}
17 1+(46.8+81.1i)T+(2.45e3+4.25e3i)T2 1 + (46.8 + 81.1i)T + (-2.45e3 + 4.25e3i)T^{2}
19 1+(32.2+18.6i)T+(3.42e35.94e3i)T2 1 + (-32.2 + 18.6i)T + (3.42e3 - 5.94e3i)T^{2}
23 1+(52.490.8i)T+(6.08e31.05e4i)T2 1 + (52.4 - 90.8i)T + (-6.08e3 - 1.05e4i)T^{2}
29 1+(124.216.i)T+(1.21e42.11e4i)T2 1 + (124. - 216. i)T + (-1.21e4 - 2.11e4i)T^{2}
31 1+278.iT2.97e4T2 1 + 278. iT - 2.97e4T^{2}
37 1+(9.435.45i)T+(2.53e4+4.38e4i)T2 1 + (-9.43 - 5.45i)T + (2.53e4 + 4.38e4i)T^{2}
41 1+(321.+185.i)T+(3.44e4+5.96e4i)T2 1 + (321. + 185. i)T + (3.44e4 + 5.96e4i)T^{2}
43 1+(206.+358.i)T+(3.97e4+6.88e4i)T2 1 + (206. + 358. i)T + (-3.97e4 + 6.88e4i)T^{2}
47 1238.iT1.03e5T2 1 - 238. iT - 1.03e5T^{2}
53 1+424.T+1.48e5T2 1 + 424.T + 1.48e5T^{2}
59 1+(670.387.i)T+(1.02e51.77e5i)T2 1 + (670. - 387. i)T + (1.02e5 - 1.77e5i)T^{2}
61 1+(61.7106.i)T+(1.13e5+1.96e5i)T2 1 + (-61.7 - 106. i)T + (-1.13e5 + 1.96e5i)T^{2}
67 1+(763.+440.i)T+(1.50e5+2.60e5i)T2 1 + (763. + 440. i)T + (1.50e5 + 2.60e5i)T^{2}
71 1+(102.59.3i)T+(1.78e53.09e5i)T2 1 + (102. - 59.3i)T + (1.78e5 - 3.09e5i)T^{2}
73 1209.iT3.89e5T2 1 - 209. iT - 3.89e5T^{2}
79 1+532.T+4.93e5T2 1 + 532.T + 4.93e5T^{2}
83 1376.iT5.71e5T2 1 - 376. iT - 5.71e5T^{2}
89 1+(36.9+21.3i)T+(3.52e5+6.10e5i)T2 1 + (36.9 + 21.3i)T + (3.52e5 + 6.10e5i)T^{2}
97 1+(553.319.i)T+(4.56e57.90e5i)T2 1 + (553. - 319. i)T + (4.56e5 - 7.90e5i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.65806177800329369280697919977, −9.620091094079445647982478740671, −8.906077624853091578543913948776, −7.83457770431815100711643462173, −7.09479644484032353683100621637, −5.52276190185409159991818365410, −4.57422993562439570415399552299, −3.03000248180092872780894719604, −1.68115457801384361916567776499, −0.07303609752524847649026298262, 1.69789291561701999109720965013, 3.25961829442592949411396701286, 4.67998326115664461177905174740, 6.19667191462973407556084609596, 6.76128620214845374942417424214, 7.82793336704261732622310828214, 8.750270784937242225844225049007, 9.899394494387568659052652750907, 10.40168979664307558985193189943, 11.43429924126071776454059155976

Graph of the ZZ-function along the critical line