L(s) = 1 | + (1.73 + i)2-s + (0.622 − 1.07i)3-s + (1.99 + 3.46i)4-s − 20.5i·5-s + (2.15 − 1.24i)6-s + (18.4 − 10.6i)7-s + 7.99i·8-s + (12.7 + 22.0i)9-s + (20.5 − 35.5i)10-s + (−45.9 − 26.5i)11-s + 4.98·12-s + 42.5·14-s + (−22.1 − 12.7i)15-s + (−8 + 13.8i)16-s + (−34.6 − 59.9i)17-s + 50.8i·18-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.119 − 0.207i)3-s + (0.249 + 0.433i)4-s − 1.83i·5-s + (0.146 − 0.0847i)6-s + (0.993 − 0.573i)7-s + 0.353i·8-s + (0.471 + 0.816i)9-s + (0.648 − 1.12i)10-s + (−1.25 − 0.727i)11-s + 0.119·12-s + 0.811·14-s + (−0.380 − 0.219i)15-s + (−0.125 + 0.216i)16-s + (−0.493 − 0.855i)17-s + 0.666i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0841 + 0.996i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.0841 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.679843078\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.679843078\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.73 - i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.622 + 1.07i)T + (-13.5 - 23.3i)T^{2} \) |
| 5 | \( 1 + 20.5iT - 125T^{2} \) |
| 7 | \( 1 + (-18.4 + 10.6i)T + (171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (45.9 + 26.5i)T + (665.5 + 1.15e3i)T^{2} \) |
| 17 | \( 1 + (34.6 + 59.9i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-39.8 + 23.0i)T + (3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (43.6 - 75.5i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-81.0 + 140. i)T + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 + 28.3iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (96.9 + 55.9i)T + (2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + (-72.9 - 42.1i)T + (3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (164. + 284. i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 - 63.2iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 721.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-709. + 409. i)T + (1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-198. - 344. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (67.4 + 38.9i)T + (1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + (-624. + 360. i)T + (1.78e5 - 3.09e5i)T^{2} \) |
| 73 | \( 1 - 57.1iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 419.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 917. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + (328. + 189. i)T + (3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + (300. - 173. i)T + (4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.15386940930845902546945051422, −9.958530472859566779553353352669, −8.612893949473297202781168138292, −8.036190373266643370288401685550, −7.31221906248212515468418099179, −5.44662039614328278535923451922, −5.03807172710048136000385529281, −4.13657438736487968517915652246, −2.18474614709589689505723538942, −0.75850515719202127173885847193,
1.99661022148926967086311631639, 2.93204603150945446695540407121, 4.09101468856274269720556848912, 5.33993645813843285430740969798, 6.49614208368045295120230608296, 7.30138394418491732743404718010, 8.445953302868345638747281993313, 10.03873149985349852398555174158, 10.40109520433923868808933617512, 11.30754623132320200797405910138