L(s) = 1 | + (1.73 + i)2-s + (−1.67 + 2.90i)3-s + (1.99 + 3.46i)4-s − 6.80i·5-s + (−5.81 + 3.35i)6-s + (13.4 − 7.76i)7-s + 7.99i·8-s + (7.86 + 13.6i)9-s + (6.80 − 11.7i)10-s + (−16.9 − 9.80i)11-s − 13.4·12-s + 31.0·14-s + (19.7 + 11.4i)15-s + (−8 + 13.8i)16-s + (62.9 + 109. i)17-s + 31.4i·18-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (−0.323 + 0.559i)3-s + (0.249 + 0.433i)4-s − 0.608i·5-s + (−0.395 + 0.228i)6-s + (0.726 − 0.419i)7-s + 0.353i·8-s + (0.291 + 0.504i)9-s + (0.215 − 0.372i)10-s + (−0.465 − 0.268i)11-s − 0.323·12-s + 0.593·14-s + (0.340 + 0.196i)15-s + (−0.125 + 0.216i)16-s + (0.898 + 1.55i)17-s + 0.411i·18-s + ⋯ |
Λ(s)=(=(338s/2ΓC(s)L(s)(0.327−0.944i)Λ(4−s)
Λ(s)=(=(338s/2ΓC(s+3/2)L(s)(0.327−0.944i)Λ(1−s)
Degree: |
2 |
Conductor: |
338
= 2⋅132
|
Sign: |
0.327−0.944i
|
Analytic conductor: |
19.9426 |
Root analytic conductor: |
4.46571 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ338(147,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 338, ( :3/2), 0.327−0.944i)
|
Particular Values
L(2) |
≈ |
2.681874100 |
L(21) |
≈ |
2.681874100 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.73−i)T |
| 13 | 1 |
good | 3 | 1+(1.67−2.90i)T+(−13.5−23.3i)T2 |
| 5 | 1+6.80iT−125T2 |
| 7 | 1+(−13.4+7.76i)T+(171.5−297.i)T2 |
| 11 | 1+(16.9+9.80i)T+(665.5+1.15e3i)T2 |
| 17 | 1+(−62.9−109.i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(−84.1+48.6i)T+(3.42e3−5.94e3i)T2 |
| 23 | 1+(−64.9+112.i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+(73.9−128.i)T+(−1.21e4−2.11e4i)T2 |
| 31 | 1−172.iT−2.97e4T2 |
| 37 | 1+(−191.−110.i)T+(2.53e4+4.38e4i)T2 |
| 41 | 1+(24.3+14.0i)T+(3.44e4+5.96e4i)T2 |
| 43 | 1+(−180.−313.i)T+(−3.97e4+6.88e4i)T2 |
| 47 | 1−456.iT−1.03e5T2 |
| 53 | 1+643.T+1.48e5T2 |
| 59 | 1+(−269.+155.i)T+(1.02e5−1.77e5i)T2 |
| 61 | 1+(405.+702.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(−6.06−3.50i)T+(1.50e5+2.60e5i)T2 |
| 71 | 1+(−736.+425.i)T+(1.78e5−3.09e5i)T2 |
| 73 | 1+1.12e3iT−3.89e5T2 |
| 79 | 1−278.T+4.93e5T2 |
| 83 | 1−417.iT−5.71e5T2 |
| 89 | 1+(−280.−162.i)T+(3.52e5+6.10e5i)T2 |
| 97 | 1+(−71.0+41.0i)T+(4.56e5−7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.01566746393021574944688777372, −10.76969387573599107564824999409, −9.461127340459413334730313173173, −8.225064051695225223232055007670, −7.60768604941582533189743618566, −6.21020874832795463732895511413, −4.98859613041482958180860376489, −4.68492105100075040462294568303, −3.25629251016813230089408409566, −1.35229409589158269901490038006,
0.962249725818217175479211349815, 2.38676607133104433079549870171, 3.59428450099678319233873907574, 5.10345411777553571916590782244, 5.83059124333673250204245430200, 7.15720978689615040636471966046, 7.65737349148508557176558189504, 9.340543176082677203312956612608, 10.09655106469691579910482462853, 11.49836030831675194919277766192