L(s) = 1 | − 8i·2-s − 39.9·3-s − 64·4-s − 323. i·5-s + 319. i·6-s − 568. i·7-s + 512i·8-s − 588.·9-s − 2.58e3·10-s + 238. i·11-s + 2.55e3·12-s − 4.54e3·14-s + 1.29e4i·15-s + 4.09e3·16-s − 2.04e4·17-s + 4.70e3i·18-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.855·3-s − 0.5·4-s − 1.15i·5-s + 0.604i·6-s − 0.626i·7-s + 0.353i·8-s − 0.268·9-s − 0.818·10-s + 0.0539i·11-s + 0.427·12-s − 0.443·14-s + 0.990i·15-s + 0.250·16-s − 1.01·17-s + 0.190i·18-s + ⋯ |
Λ(s)=(=(338s/2ΓC(s)L(s)(0.554+0.832i)Λ(8−s)
Λ(s)=(=(338s/2ΓC(s+7/2)L(s)(0.554+0.832i)Λ(1−s)
Degree: |
2 |
Conductor: |
338
= 2⋅132
|
Sign: |
0.554+0.832i
|
Analytic conductor: |
105.586 |
Root analytic conductor: |
10.2755 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ338(337,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 338, ( :7/2), 0.554+0.832i)
|
Particular Values
L(4) |
≈ |
0.8619610409 |
L(21) |
≈ |
0.8619610409 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+8iT |
| 13 | 1 |
good | 3 | 1+39.9T+2.18e3T2 |
| 5 | 1+323.iT−7.81e4T2 |
| 7 | 1+568.iT−8.23e5T2 |
| 11 | 1−238.iT−1.94e7T2 |
| 17 | 1+2.04e4T+4.10e8T2 |
| 19 | 1+9.64e3iT−8.93e8T2 |
| 23 | 1−7.82e4T+3.40e9T2 |
| 29 | 1+1.38e5T+1.72e10T2 |
| 31 | 1−1.60e5iT−2.75e10T2 |
| 37 | 1−1.52e5iT−9.49e10T2 |
| 41 | 1−1.85e5iT−1.94e11T2 |
| 43 | 1+8.50e4T+2.71e11T2 |
| 47 | 1−1.20e6iT−5.06e11T2 |
| 53 | 1+6.65e5T+1.17e12T2 |
| 59 | 1−2.48e6iT−2.48e12T2 |
| 61 | 1+3.04e6T+3.14e12T2 |
| 67 | 1+3.87e5iT−6.06e12T2 |
| 71 | 1−3.68e6iT−9.09e12T2 |
| 73 | 1+1.57e6iT−1.10e13T2 |
| 79 | 1−2.29e6T+1.92e13T2 |
| 83 | 1+7.93e6iT−2.71e13T2 |
| 89 | 1+8.15e6iT−4.42e13T2 |
| 97 | 1+1.33e6iT−8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.50909254446312383968265436834, −9.199215587392234387577152143507, −8.700732420312511108914972053852, −7.34892037427294304797794247441, −6.11833692512371083802136061119, −4.97212976653520019603767483783, −4.48330134204245843503117292351, −3.00923689381029549655105776521, −1.43293200281877317531790896554, −0.61387212433607916546038049633,
0.36353430297368156699168250972, 2.25677612196461747525294693063, 3.47110058126460420576348927063, 4.92440304809026562595712609931, 5.82787707316120928387479520525, 6.55327912886416284384544177417, 7.33837318659766354421136572878, 8.576096320038673397667656923542, 9.471158897555456492744624305880, 10.76771826858610253369946921657