Properties

Label 2-3381-1.1-c1-0-51
Degree $2$
Conductor $3381$
Sign $1$
Analytic cond. $26.9974$
Root an. cond. $5.19590$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s + 9-s + 6·11-s − 2·12-s + 5·13-s + 4·16-s − 6·17-s − 19-s − 23-s − 5·25-s + 27-s + 6·29-s + 5·31-s + 6·33-s − 2·36-s − 7·37-s + 5·39-s − 43-s − 12·44-s + 6·47-s + 4·48-s − 6·51-s − 10·52-s + 12·53-s − 57-s − 6·59-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s + 1/3·9-s + 1.80·11-s − 0.577·12-s + 1.38·13-s + 16-s − 1.45·17-s − 0.229·19-s − 0.208·23-s − 25-s + 0.192·27-s + 1.11·29-s + 0.898·31-s + 1.04·33-s − 1/3·36-s − 1.15·37-s + 0.800·39-s − 0.152·43-s − 1.80·44-s + 0.875·47-s + 0.577·48-s − 0.840·51-s − 1.38·52-s + 1.64·53-s − 0.132·57-s − 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3381 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3381 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3381\)    =    \(3 \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(26.9974\)
Root analytic conductor: \(5.19590\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3381,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.105694926\)
\(L(\frac12)\) \(\approx\) \(2.105694926\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
7 \( 1 \)
23 \( 1 + T \)
good2 \( 1 + p T^{2} \)
5 \( 1 + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
13 \( 1 - 5 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 + 7 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 - 5 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 + 7 T + p T^{2} \)
79 \( 1 - 5 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.625037634372769662773359089261, −8.319995239045270419575059284670, −7.03440325934198167051172505911, −6.42986666345209608160897643920, −5.64830121119480539528704598682, −4.27498360461651945204072901678, −4.17644875441450813916070086237, −3.27750005862054764369574055987, −1.90907078639894873995986034777, −0.897757036926060875786439504030, 0.897757036926060875786439504030, 1.90907078639894873995986034777, 3.27750005862054764369574055987, 4.17644875441450813916070086237, 4.27498360461651945204072901678, 5.64830121119480539528704598682, 6.42986666345209608160897643920, 7.03440325934198167051172505911, 8.319995239045270419575059284670, 8.625037634372769662773359089261

Graph of the $Z$-function along the critical line