L(s) = 1 | − 0.329·2-s + 3-s − 1.89·4-s + 2.73·5-s − 0.329·6-s + 1.28·8-s + 9-s − 0.902·10-s − 2.50·11-s − 1.89·12-s − 1.48·13-s + 2.73·15-s + 3.35·16-s − 0.902·17-s − 0.329·18-s − 2.50·19-s − 5.17·20-s + 0.825·22-s + 23-s + 1.28·24-s + 2.48·25-s + 0.489·26-s + 27-s + 6.68·29-s − 0.902·30-s − 1.09·31-s − 3.67·32-s + ⋯ |
L(s) = 1 | − 0.233·2-s + 0.577·3-s − 0.945·4-s + 1.22·5-s − 0.134·6-s + 0.453·8-s + 0.333·9-s − 0.285·10-s − 0.755·11-s − 0.545·12-s − 0.411·13-s + 0.706·15-s + 0.839·16-s − 0.218·17-s − 0.0777·18-s − 0.574·19-s − 1.15·20-s + 0.176·22-s + 0.208·23-s + 0.261·24-s + 0.497·25-s + 0.0960·26-s + 0.192·27-s + 1.24·29-s − 0.164·30-s − 0.197·31-s − 0.649·32-s + ⋯ |
Λ(s)=(=(3381s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3381s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.949583000 |
L(21) |
≈ |
1.949583000 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 7 | 1 |
| 23 | 1−T |
good | 2 | 1+0.329T+2T2 |
| 5 | 1−2.73T+5T2 |
| 11 | 1+2.50T+11T2 |
| 13 | 1+1.48T+13T2 |
| 17 | 1+0.902T+17T2 |
| 19 | 1+2.50T+19T2 |
| 29 | 1−6.68T+29T2 |
| 31 | 1+1.09T+31T2 |
| 37 | 1−9.91T+37T2 |
| 41 | 1−2.30T+41T2 |
| 43 | 1−5.83T+43T2 |
| 47 | 1−6.74T+47T2 |
| 53 | 1+4.91T+53T2 |
| 59 | 1−7.32T+59T2 |
| 61 | 1−1.00T+61T2 |
| 67 | 1−11.2T+67T2 |
| 71 | 1+0.362T+71T2 |
| 73 | 1−5.34T+73T2 |
| 79 | 1−10.4T+79T2 |
| 83 | 1+7.59T+83T2 |
| 89 | 1+10.6T+89T2 |
| 97 | 1+13.9T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.648845447849085772181750684315, −8.088952948073867262480643504494, −7.28995337365300565086589262814, −6.28920396041634871778143616391, −5.53601479610653638086036111760, −4.78130119987258221374666823300, −4.04430546859387324448689388063, −2.80143040896507151707403441487, −2.13373336035446610503052003188, −0.852861991991762337128025979377,
0.852861991991762337128025979377, 2.13373336035446610503052003188, 2.80143040896507151707403441487, 4.04430546859387324448689388063, 4.78130119987258221374666823300, 5.53601479610653638086036111760, 6.28920396041634871778143616391, 7.28995337365300565086589262814, 8.088952948073867262480643504494, 8.648845447849085772181750684315