Properties

Label 2-3447-1.1-c1-0-49
Degree $2$
Conductor $3447$
Sign $1$
Analytic cond. $27.5244$
Root an. cond. $5.24637$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.378·2-s − 1.85·4-s + 3.79·5-s + 4.13·7-s + 1.45·8-s − 1.43·10-s − 6.25·11-s − 2.85·13-s − 1.56·14-s + 3.16·16-s + 0.304·17-s − 0.261·19-s − 7.03·20-s + 2.36·22-s − 6.24·23-s + 9.36·25-s + 1.08·26-s − 7.67·28-s + 3.98·29-s + 1.52·31-s − 4.11·32-s − 0.115·34-s + 15.6·35-s + 6.41·37-s + 0.0987·38-s + 5.52·40-s + 4.56·41-s + ⋯
L(s)  = 1  − 0.267·2-s − 0.928·4-s + 1.69·5-s + 1.56·7-s + 0.515·8-s − 0.453·10-s − 1.88·11-s − 0.792·13-s − 0.417·14-s + 0.790·16-s + 0.0739·17-s − 0.0599·19-s − 1.57·20-s + 0.504·22-s − 1.30·23-s + 1.87·25-s + 0.211·26-s − 1.44·28-s + 0.740·29-s + 0.273·31-s − 0.726·32-s − 0.0197·34-s + 2.64·35-s + 1.05·37-s + 0.0160·38-s + 0.873·40-s + 0.712·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3447 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3447 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3447\)    =    \(3^{2} \cdot 383\)
Sign: $1$
Analytic conductor: \(27.5244\)
Root analytic conductor: \(5.24637\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3447,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.926703217\)
\(L(\frac12)\) \(\approx\) \(1.926703217\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
383 \( 1 + T \)
good2 \( 1 + 0.378T + 2T^{2} \)
5 \( 1 - 3.79T + 5T^{2} \)
7 \( 1 - 4.13T + 7T^{2} \)
11 \( 1 + 6.25T + 11T^{2} \)
13 \( 1 + 2.85T + 13T^{2} \)
17 \( 1 - 0.304T + 17T^{2} \)
19 \( 1 + 0.261T + 19T^{2} \)
23 \( 1 + 6.24T + 23T^{2} \)
29 \( 1 - 3.98T + 29T^{2} \)
31 \( 1 - 1.52T + 31T^{2} \)
37 \( 1 - 6.41T + 37T^{2} \)
41 \( 1 - 4.56T + 41T^{2} \)
43 \( 1 - 6.15T + 43T^{2} \)
47 \( 1 - 6.49T + 47T^{2} \)
53 \( 1 - 11.0T + 53T^{2} \)
59 \( 1 + 1.76T + 59T^{2} \)
61 \( 1 - 5.78T + 61T^{2} \)
67 \( 1 + 0.724T + 67T^{2} \)
71 \( 1 + 12.6T + 71T^{2} \)
73 \( 1 - 14.9T + 73T^{2} \)
79 \( 1 - 10.6T + 79T^{2} \)
83 \( 1 - 4.57T + 83T^{2} \)
89 \( 1 + 7.83T + 89T^{2} \)
97 \( 1 - 6.20T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.584151396922532905045926459968, −7.917874695342754285072303438106, −7.46412445756046948739935685962, −6.04021458395783358783522108494, −5.42048675748869545600721605977, −4.97141760648301025853580211613, −4.26841448084167008047846200529, −2.55195831346728254101913535737, −2.11332719682665898815380730617, −0.880553600694343690723401781701, 0.880553600694343690723401781701, 2.11332719682665898815380730617, 2.55195831346728254101913535737, 4.26841448084167008047846200529, 4.97141760648301025853580211613, 5.42048675748869545600721605977, 6.04021458395783358783522108494, 7.46412445756046948739935685962, 7.917874695342754285072303438106, 8.584151396922532905045926459968

Graph of the $Z$-function along the critical line