Properties

Label 2-3447-1.1-c1-0-81
Degree $2$
Conductor $3447$
Sign $1$
Analytic cond. $27.5244$
Root an. cond. $5.24637$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.43·2-s + 3.91·4-s − 3.94·5-s + 4.49·7-s + 4.66·8-s − 9.60·10-s + 3.37·11-s + 4.18·13-s + 10.9·14-s + 3.50·16-s − 4.49·17-s − 2.81·19-s − 15.4·20-s + 8.19·22-s + 0.958·23-s + 10.5·25-s + 10.1·26-s + 17.5·28-s + 6.61·29-s + 2.18·31-s − 0.799·32-s − 10.9·34-s − 17.7·35-s + 1.74·37-s − 6.84·38-s − 18.4·40-s + 3.20·41-s + ⋯
L(s)  = 1  + 1.71·2-s + 1.95·4-s − 1.76·5-s + 1.69·7-s + 1.64·8-s − 3.03·10-s + 1.01·11-s + 1.16·13-s + 2.91·14-s + 0.875·16-s − 1.09·17-s − 0.645·19-s − 3.45·20-s + 1.74·22-s + 0.199·23-s + 2.11·25-s + 1.99·26-s + 3.32·28-s + 1.22·29-s + 0.392·31-s − 0.141·32-s − 1.87·34-s − 2.99·35-s + 0.286·37-s − 1.11·38-s − 2.91·40-s + 0.500·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3447 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3447 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3447\)    =    \(3^{2} \cdot 383\)
Sign: $1$
Analytic conductor: \(27.5244\)
Root analytic conductor: \(5.24637\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3447,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.253490099\)
\(L(\frac12)\) \(\approx\) \(5.253490099\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
383 \( 1 + T \)
good2 \( 1 - 2.43T + 2T^{2} \)
5 \( 1 + 3.94T + 5T^{2} \)
7 \( 1 - 4.49T + 7T^{2} \)
11 \( 1 - 3.37T + 11T^{2} \)
13 \( 1 - 4.18T + 13T^{2} \)
17 \( 1 + 4.49T + 17T^{2} \)
19 \( 1 + 2.81T + 19T^{2} \)
23 \( 1 - 0.958T + 23T^{2} \)
29 \( 1 - 6.61T + 29T^{2} \)
31 \( 1 - 2.18T + 31T^{2} \)
37 \( 1 - 1.74T + 37T^{2} \)
41 \( 1 - 3.20T + 41T^{2} \)
43 \( 1 + 7.51T + 43T^{2} \)
47 \( 1 + 4.42T + 47T^{2} \)
53 \( 1 - 12.8T + 53T^{2} \)
59 \( 1 + 10.9T + 59T^{2} \)
61 \( 1 - 4.61T + 61T^{2} \)
67 \( 1 - 4.61T + 67T^{2} \)
71 \( 1 - 8.03T + 71T^{2} \)
73 \( 1 - 7.58T + 73T^{2} \)
79 \( 1 - 16.1T + 79T^{2} \)
83 \( 1 - 2.06T + 83T^{2} \)
89 \( 1 - 5.89T + 89T^{2} \)
97 \( 1 + 5.27T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.358784742116147013356336007833, −7.80974077487345106184874671468, −6.77537636440135648211876377469, −6.43879371647720009906830030738, −5.16335272800132482383381928231, −4.56226402915232059339036218663, −4.08215583210450140488308753836, −3.54359572115838831217171726505, −2.33648866442928217276074614344, −1.15013895606966687911071297530, 1.15013895606966687911071297530, 2.33648866442928217276074614344, 3.54359572115838831217171726505, 4.08215583210450140488308753836, 4.56226402915232059339036218663, 5.16335272800132482383381928231, 6.43879371647720009906830030738, 6.77537636440135648211876377469, 7.80974077487345106184874671468, 8.358784742116147013356336007833

Graph of the $Z$-function along the critical line