Properties

Label 2-35-1.1-c9-0-6
Degree $2$
Conductor $35$
Sign $1$
Analytic cond. $18.0262$
Root an. cond. $4.24573$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 21.5·2-s + 221.·3-s − 48.6·4-s − 625·5-s − 4.77e3·6-s + 2.40e3·7-s + 1.20e4·8-s + 2.95e4·9-s + 1.34e4·10-s + 7.26e3·11-s − 1.07e4·12-s − 1.04e5·13-s − 5.16e4·14-s − 1.38e5·15-s − 2.34e5·16-s + 3.77e5·17-s − 6.36e5·18-s + 6.99e5·19-s + 3.03e4·20-s + 5.32e5·21-s − 1.56e5·22-s − 1.41e5·23-s + 2.67e6·24-s + 3.90e5·25-s + 2.25e6·26-s + 2.19e6·27-s − 1.16e5·28-s + ⋯
L(s)  = 1  − 0.951·2-s + 1.58·3-s − 0.0949·4-s − 0.447·5-s − 1.50·6-s + 0.377·7-s + 1.04·8-s + 1.50·9-s + 0.425·10-s + 0.149·11-s − 0.150·12-s − 1.01·13-s − 0.359·14-s − 0.707·15-s − 0.896·16-s + 1.09·17-s − 1.43·18-s + 1.23·19-s + 0.0424·20-s + 0.598·21-s − 0.142·22-s − 0.105·23-s + 1.64·24-s + 0.200·25-s + 0.969·26-s + 0.796·27-s − 0.0358·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35\)    =    \(5 \cdot 7\)
Sign: $1$
Analytic conductor: \(18.0262\)
Root analytic conductor: \(4.24573\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(1.796599312\)
\(L(\frac12)\) \(\approx\) \(1.796599312\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 625T \)
7 \( 1 - 2.40e3T \)
good2 \( 1 + 21.5T + 512T^{2} \)
3 \( 1 - 221.T + 1.96e4T^{2} \)
11 \( 1 - 7.26e3T + 2.35e9T^{2} \)
13 \( 1 + 1.04e5T + 1.06e10T^{2} \)
17 \( 1 - 3.77e5T + 1.18e11T^{2} \)
19 \( 1 - 6.99e5T + 3.22e11T^{2} \)
23 \( 1 + 1.41e5T + 1.80e12T^{2} \)
29 \( 1 - 4.83e6T + 1.45e13T^{2} \)
31 \( 1 - 9.21e6T + 2.64e13T^{2} \)
37 \( 1 - 1.62e7T + 1.29e14T^{2} \)
41 \( 1 + 2.26e6T + 3.27e14T^{2} \)
43 \( 1 + 5.43e6T + 5.02e14T^{2} \)
47 \( 1 - 5.34e7T + 1.11e15T^{2} \)
53 \( 1 + 3.47e7T + 3.29e15T^{2} \)
59 \( 1 + 1.69e8T + 8.66e15T^{2} \)
61 \( 1 + 4.86e7T + 1.16e16T^{2} \)
67 \( 1 + 3.24e7T + 2.72e16T^{2} \)
71 \( 1 + 1.15e8T + 4.58e16T^{2} \)
73 \( 1 + 2.66e8T + 5.88e16T^{2} \)
79 \( 1 - 2.75e8T + 1.19e17T^{2} \)
83 \( 1 - 4.29e8T + 1.86e17T^{2} \)
89 \( 1 + 8.82e8T + 3.50e17T^{2} \)
97 \( 1 + 3.64e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.41091622741652977622873984724, −13.71564354416456420852656306325, −12.07357848933201668765484281759, −10.14751927393534614320521221726, −9.295189258466060564880239937996, −8.100576059471277404996661511183, −7.52631651505501939466156304107, −4.52423088699030219225841755500, −2.86342671802231621631308047716, −1.10755322359494838898367467126, 1.10755322359494838898367467126, 2.86342671802231621631308047716, 4.52423088699030219225841755500, 7.52631651505501939466156304107, 8.100576059471277404996661511183, 9.295189258466060564880239937996, 10.14751927393534614320521221726, 12.07357848933201668765484281759, 13.71564354416456420852656306325, 14.41091622741652977622873984724

Graph of the $Z$-function along the critical line