Properties

Label 2-35-1.1-c3-0-0
Degree $2$
Conductor $35$
Sign $1$
Analytic cond. $2.06506$
Root an. cond. $1.43703$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.62·2-s − 8.38·3-s + 13.3·4-s + 5·5-s + 38.7·6-s + 7·7-s − 24.9·8-s + 43.3·9-s − 23.1·10-s − 30.1·11-s − 112.·12-s + 88.9·13-s − 32.3·14-s − 41.9·15-s + 8.10·16-s − 4.73·17-s − 200.·18-s + 124.·19-s + 66.9·20-s − 58.7·21-s + 139.·22-s + 20.2·23-s + 208.·24-s + 25·25-s − 411.·26-s − 136.·27-s + 93.7·28-s + ⋯
L(s)  = 1  − 1.63·2-s − 1.61·3-s + 1.67·4-s + 0.447·5-s + 2.63·6-s + 0.377·7-s − 1.10·8-s + 1.60·9-s − 0.731·10-s − 0.825·11-s − 2.70·12-s + 1.89·13-s − 0.617·14-s − 0.721·15-s + 0.126·16-s − 0.0675·17-s − 2.62·18-s + 1.50·19-s + 0.748·20-s − 0.610·21-s + 1.34·22-s + 0.183·23-s + 1.77·24-s + 0.200·25-s − 3.10·26-s − 0.976·27-s + 0.632·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35\)    =    \(5 \cdot 7\)
Sign: $1$
Analytic conductor: \(2.06506\)
Root analytic conductor: \(1.43703\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.4054847925\)
\(L(\frac12)\) \(\approx\) \(0.4054847925\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 5T \)
7 \( 1 - 7T \)
good2 \( 1 + 4.62T + 8T^{2} \)
3 \( 1 + 8.38T + 27T^{2} \)
11 \( 1 + 30.1T + 1.33e3T^{2} \)
13 \( 1 - 88.9T + 2.19e3T^{2} \)
17 \( 1 + 4.73T + 4.91e3T^{2} \)
19 \( 1 - 124.T + 6.85e3T^{2} \)
23 \( 1 - 20.2T + 1.21e4T^{2} \)
29 \( 1 - 134.T + 2.43e4T^{2} \)
31 \( 1 + 2.03T + 2.97e4T^{2} \)
37 \( 1 + 141.T + 5.06e4T^{2} \)
41 \( 1 - 95.2T + 6.89e4T^{2} \)
43 \( 1 + 298.T + 7.95e4T^{2} \)
47 \( 1 + 129.T + 1.03e5T^{2} \)
53 \( 1 - 388.T + 1.48e5T^{2} \)
59 \( 1 - 838.T + 2.05e5T^{2} \)
61 \( 1 - 389.T + 2.26e5T^{2} \)
67 \( 1 - 697.T + 3.00e5T^{2} \)
71 \( 1 + 523.T + 3.57e5T^{2} \)
73 \( 1 - 66.4T + 3.89e5T^{2} \)
79 \( 1 + 526.T + 4.93e5T^{2} \)
83 \( 1 - 70.0T + 5.71e5T^{2} \)
89 \( 1 + 9.27T + 7.04e5T^{2} \)
97 \( 1 + 4.19T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.30505966109582821774926154834, −15.85189850235758509320536365784, −13.41669853626646070067176697869, −11.68393347563111051566319877659, −10.89130227704390868857615237865, −10.00712899667892935679610843811, −8.408801047768907953737951766220, −6.83264824669928917182084762348, −5.47470118189771764634654008489, −1.06945212547537925642012809733, 1.06945212547537925642012809733, 5.47470118189771764634654008489, 6.83264824669928917182084762348, 8.408801047768907953737951766220, 10.00712899667892935679610843811, 10.89130227704390868857615237865, 11.68393347563111051566319877659, 13.41669853626646070067176697869, 15.85189850235758509320536365784, 16.30505966109582821774926154834

Graph of the $Z$-function along the critical line