Properties

Label 2-35-1.1-c7-0-4
Degree $2$
Conductor $35$
Sign $1$
Analytic cond. $10.9334$
Root an. cond. $3.30658$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 21.9·2-s + 9.99·3-s + 354.·4-s + 125·5-s − 219.·6-s + 343·7-s − 4.98e3·8-s − 2.08e3·9-s − 2.74e3·10-s + 4.69e3·11-s + 3.54e3·12-s − 1.37e3·13-s − 7.53e3·14-s + 1.24e3·15-s + 6.40e4·16-s − 2.08e4·17-s + 4.58e4·18-s + 5.23e4·19-s + 4.43e4·20-s + 3.42e3·21-s − 1.03e5·22-s + 2.27e4·23-s − 4.98e4·24-s + 1.56e4·25-s + 3.01e4·26-s − 4.27e4·27-s + 1.21e5·28-s + ⋯
L(s)  = 1  − 1.94·2-s + 0.213·3-s + 2.77·4-s + 0.447·5-s − 0.415·6-s + 0.377·7-s − 3.44·8-s − 0.954·9-s − 0.868·10-s + 1.06·11-s + 0.592·12-s − 0.173·13-s − 0.734·14-s + 0.0956·15-s + 3.91·16-s − 1.02·17-s + 1.85·18-s + 1.75·19-s + 1.23·20-s + 0.0808·21-s − 2.06·22-s + 0.390·23-s − 0.735·24-s + 0.199·25-s + 0.336·26-s − 0.417·27-s + 1.04·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35\)    =    \(5 \cdot 7\)
Sign: $1$
Analytic conductor: \(10.9334\)
Root analytic conductor: \(3.30658\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.8665127486\)
\(L(\frac12)\) \(\approx\) \(0.8665127486\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 125T \)
7 \( 1 - 343T \)
good2 \( 1 + 21.9T + 128T^{2} \)
3 \( 1 - 9.99T + 2.18e3T^{2} \)
11 \( 1 - 4.69e3T + 1.94e7T^{2} \)
13 \( 1 + 1.37e3T + 6.27e7T^{2} \)
17 \( 1 + 2.08e4T + 4.10e8T^{2} \)
19 \( 1 - 5.23e4T + 8.93e8T^{2} \)
23 \( 1 - 2.27e4T + 3.40e9T^{2} \)
29 \( 1 + 4.66e4T + 1.72e10T^{2} \)
31 \( 1 - 2.48e5T + 2.75e10T^{2} \)
37 \( 1 - 3.16e5T + 9.49e10T^{2} \)
41 \( 1 - 4.77e5T + 1.94e11T^{2} \)
43 \( 1 - 7.41e5T + 2.71e11T^{2} \)
47 \( 1 - 1.14e5T + 5.06e11T^{2} \)
53 \( 1 - 1.19e6T + 1.17e12T^{2} \)
59 \( 1 + 6.57e5T + 2.48e12T^{2} \)
61 \( 1 + 2.35e6T + 3.14e12T^{2} \)
67 \( 1 + 2.54e6T + 6.06e12T^{2} \)
71 \( 1 - 2.16e6T + 9.09e12T^{2} \)
73 \( 1 - 2.68e6T + 1.10e13T^{2} \)
79 \( 1 - 1.99e5T + 1.92e13T^{2} \)
83 \( 1 + 6.23e6T + 2.71e13T^{2} \)
89 \( 1 - 1.69e6T + 4.42e13T^{2} \)
97 \( 1 + 4.22e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.38411339580587681766466164097, −14.12831285654820229109915260418, −11.86278876517181200316418612661, −11.04544315610457071982076010096, −9.554144538873110269560233225097, −8.839499909479441855205320341275, −7.52196948460515205212032547527, −6.11089241668153167180422343908, −2.61401530443273540639120601509, −1.00390428722614006707648473964, 1.00390428722614006707648473964, 2.61401530443273540639120601509, 6.11089241668153167180422343908, 7.52196948460515205212032547527, 8.839499909479441855205320341275, 9.554144538873110269560233225097, 11.04544315610457071982076010096, 11.86278876517181200316418612661, 14.12831285654820229109915260418, 15.38411339580587681766466164097

Graph of the $Z$-function along the critical line