L(s) = 1 | + 2-s + 2.44·3-s + 4-s + 2.44·6-s + 7-s + 8-s + 2.99·9-s − 4.89·11-s + 2.44·12-s − 4.44·13-s + 14-s + 16-s − 2·17-s + 2.99·18-s + 1.55·19-s + 2.44·21-s − 4.89·22-s − 2.89·23-s + 2.44·24-s − 4.44·26-s + 28-s + 6.89·29-s + 8.89·31-s + 32-s − 11.9·33-s − 2·34-s + 2.99·36-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.41·3-s + 0.5·4-s + 0.999·6-s + 0.377·7-s + 0.353·8-s + 0.999·9-s − 1.47·11-s + 0.707·12-s − 1.23·13-s + 0.267·14-s + 0.250·16-s − 0.485·17-s + 0.707·18-s + 0.355·19-s + 0.534·21-s − 1.04·22-s − 0.604·23-s + 0.499·24-s − 0.872·26-s + 0.188·28-s + 1.28·29-s + 1.59·31-s + 0.176·32-s − 2.08·33-s − 0.342·34-s + 0.499·36-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(350s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.830982530 |
L(21) |
≈ |
2.830982530 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 5 | 1 |
| 7 | 1−T |
good | 3 | 1−2.44T+3T2 |
| 11 | 1+4.89T+11T2 |
| 13 | 1+4.44T+13T2 |
| 17 | 1+2T+17T2 |
| 19 | 1−1.55T+19T2 |
| 23 | 1+2.89T+23T2 |
| 29 | 1−6.89T+29T2 |
| 31 | 1−8.89T+31T2 |
| 37 | 1+2T+37T2 |
| 41 | 1+1.10T+41T2 |
| 43 | 1−0.898T+43T2 |
| 47 | 1+8.89T+47T2 |
| 53 | 1−10.8T+53T2 |
| 59 | 1+1.55T+59T2 |
| 61 | 1−3.55T+61T2 |
| 67 | 1−8T+67T2 |
| 71 | 1+1.10T+71T2 |
| 73 | 1+2.89T+73T2 |
| 79 | 1−6.89T+79T2 |
| 83 | 1−2.44T+83T2 |
| 89 | 1+10T+89T2 |
| 97 | 1+15.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.70456166423393402195005342402, −10.40695359032285207903865428901, −9.738844466819335119483763061725, −8.375924916232554564968780107376, −7.88805460590994197147068727888, −6.86512930623403544071985121749, −5.30743194698470000684988949513, −4.39664725359770703549679315738, −2.95437356862933556349589288599, −2.28923518601867728793453841962,
2.28923518601867728793453841962, 2.95437356862933556349589288599, 4.39664725359770703549679315738, 5.30743194698470000684988949513, 6.86512930623403544071985121749, 7.88805460590994197147068727888, 8.375924916232554564968780107376, 9.738844466819335119483763061725, 10.40695359032285207903865428901, 11.70456166423393402195005342402