L(s) = 1 | + i·2-s + 3i·3-s − 4-s − 3·6-s − i·7-s − i·8-s − 6·9-s − 5·11-s − 3i·12-s + 6i·13-s + 14-s + 16-s − i·17-s − 6i·18-s + 3·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 1.73i·3-s − 0.5·4-s − 1.22·6-s − 0.377i·7-s − 0.353i·8-s − 2·9-s − 1.50·11-s − 0.866i·12-s + 1.66i·13-s + 0.267·14-s + 0.250·16-s − 0.242i·17-s − 1.41i·18-s + 0.688·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.210675 - 0.892434i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.210675 - 0.892434i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 5 | \( 1 \) |
| 7 | \( 1 + iT \) |
good | 3 | \( 1 - 3iT - 3T^{2} \) |
| 11 | \( 1 + 5T + 11T^{2} \) |
| 13 | \( 1 - 6iT - 13T^{2} \) |
| 17 | \( 1 + iT - 17T^{2} \) |
| 19 | \( 1 - 3T + 19T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 - 6T + 29T^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 37 | \( 1 - 8iT - 37T^{2} \) |
| 41 | \( 1 - 11T + 41T^{2} \) |
| 43 | \( 1 - 8iT - 43T^{2} \) |
| 47 | \( 1 - 2iT - 47T^{2} \) |
| 53 | \( 1 + 4iT - 53T^{2} \) |
| 59 | \( 1 + 4T + 59T^{2} \) |
| 61 | \( 1 + 2T + 61T^{2} \) |
| 67 | \( 1 - 9iT - 67T^{2} \) |
| 71 | \( 1 + 10T + 71T^{2} \) |
| 73 | \( 1 - 7iT - 73T^{2} \) |
| 79 | \( 1 - 2T + 79T^{2} \) |
| 83 | \( 1 + 11iT - 83T^{2} \) |
| 89 | \( 1 - 11T + 89T^{2} \) |
| 97 | \( 1 + 10iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.71213532525521739404529331675, −10.85847408081630898113138468309, −9.994343734392532640515735584001, −9.370667495287345675425294175021, −8.432901335985605660532466935114, −7.34160332609263357086643054592, −6.00923260737645566883775136857, −4.89340268853846218069727323280, −4.35538657252140008829443741148, −3.01173303664762003186045602547,
0.62531841110652152098686894891, 2.25592963732092920140091820731, 3.09017020285620483598189848717, 5.26795596119065845092726418093, 5.95850393584290940415092698715, 7.51444651436689669043190127183, 7.900121616147704622314811869964, 8.921340809713994409888151596341, 10.35013153478523174428802262470, 11.03248914126200209180492012179