L(s) = 1 | + i·2-s + 3i·3-s − 4-s − 3·6-s − i·7-s − i·8-s − 6·9-s − 5·11-s − 3i·12-s + 6i·13-s + 14-s + 16-s − i·17-s − 6i·18-s + 3·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 1.73i·3-s − 0.5·4-s − 1.22·6-s − 0.377i·7-s − 0.353i·8-s − 2·9-s − 1.50·11-s − 0.866i·12-s + 1.66i·13-s + 0.267·14-s + 0.250·16-s − 0.242i·17-s − 1.41i·18-s + 0.688·19-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)(−0.894+0.447i)Λ(2−s)
Λ(s)=(=(350s/2ΓC(s+1/2)L(s)(−0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
350
= 2⋅52⋅7
|
Sign: |
−0.894+0.447i
|
Analytic conductor: |
2.79476 |
Root analytic conductor: |
1.67175 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ350(99,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 350, ( :1/2), −0.894+0.447i)
|
Particular Values
L(1) |
≈ |
0.210675−0.892434i |
L(21) |
≈ |
0.210675−0.892434i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 5 | 1 |
| 7 | 1+iT |
good | 3 | 1−3iT−3T2 |
| 11 | 1+5T+11T2 |
| 13 | 1−6iT−13T2 |
| 17 | 1+iT−17T2 |
| 19 | 1−3T+19T2 |
| 23 | 1−23T2 |
| 29 | 1−6T+29T2 |
| 31 | 1+4T+31T2 |
| 37 | 1−8iT−37T2 |
| 41 | 1−11T+41T2 |
| 43 | 1−8iT−43T2 |
| 47 | 1−2iT−47T2 |
| 53 | 1+4iT−53T2 |
| 59 | 1+4T+59T2 |
| 61 | 1+2T+61T2 |
| 67 | 1−9iT−67T2 |
| 71 | 1+10T+71T2 |
| 73 | 1−7iT−73T2 |
| 79 | 1−2T+79T2 |
| 83 | 1+11iT−83T2 |
| 89 | 1−11T+89T2 |
| 97 | 1+10iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.71213532525521739404529331675, −10.85847408081630898113138468309, −9.994343734392532640515735584001, −9.370667495287345675425294175021, −8.432901335985605660532466935114, −7.34160332609263357086643054592, −6.00923260737645566883775136857, −4.89340268853846218069727323280, −4.35538657252140008829443741148, −3.01173303664762003186045602547,
0.62531841110652152098686894891, 2.25592963732092920140091820731, 3.09017020285620483598189848717, 5.26795596119065845092726418093, 5.95850393584290940415092698715, 7.51444651436689669043190127183, 7.900121616147704622314811869964, 8.921340809713994409888151596341, 10.35013153478523174428802262470, 11.03248914126200209180492012179