L(s) = 1 | + 2i·2-s + 4i·3-s − 4·4-s − 8·6-s − 7i·7-s − 8i·8-s + 11·9-s + 5·11-s − 16i·12-s − 82i·13-s + 14·14-s + 16·16-s − 12i·17-s + 22i·18-s + 42·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 0.769i·3-s − 0.5·4-s − 0.544·6-s − 0.377i·7-s − 0.353i·8-s + 0.407·9-s + 0.137·11-s − 0.384i·12-s − 1.74i·13-s + 0.267·14-s + 0.250·16-s − 0.171i·17-s + 0.288i·18-s + 0.507·19-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)(0.894−0.447i)Λ(4−s)
Λ(s)=(=(350s/2ΓC(s+3/2)L(s)(0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
350
= 2⋅52⋅7
|
Sign: |
0.894−0.447i
|
Analytic conductor: |
20.6506 |
Root analytic conductor: |
4.54430 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ350(99,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 350, ( :3/2), 0.894−0.447i)
|
Particular Values
L(2) |
≈ |
1.754314812 |
L(21) |
≈ |
1.754314812 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−2iT |
| 5 | 1 |
| 7 | 1+7iT |
good | 3 | 1−4iT−27T2 |
| 11 | 1−5T+1.33e3T2 |
| 13 | 1+82iT−2.19e3T2 |
| 17 | 1+12iT−4.91e3T2 |
| 19 | 1−42T+6.85e3T2 |
| 23 | 1+175iT−1.21e4T2 |
| 29 | 1+T+2.43e4T2 |
| 31 | 1−226T+2.97e4T2 |
| 37 | 1+19iT−5.06e4T2 |
| 41 | 1−16T+6.89e4T2 |
| 43 | 1+281iT−7.95e4T2 |
| 47 | 1−334iT−1.03e5T2 |
| 53 | 1−398iT−1.48e5T2 |
| 59 | 1+106T+2.05e5T2 |
| 61 | 1−48T+2.26e5T2 |
| 67 | 1−483iT−3.00e5T2 |
| 71 | 1+15T+3.57e5T2 |
| 73 | 1+1.04e3iT−3.89e5T2 |
| 79 | 1−1.25e3T+4.93e5T2 |
| 83 | 1+758iT−5.71e5T2 |
| 89 | 1+86T+7.04e5T2 |
| 97 | 1−710iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.66560709921042268840084654607, −10.26925474773874803237329613024, −9.290509715300972407834825053010, −8.228567947035707006389265355201, −7.39117894098126002599413150119, −6.25705035058007297310911286034, −5.13235829345022881097627823780, −4.28160841356787353520963141142, −3.05792702224212663854573183874, −0.72845727608546573999796201431,
1.24784989889817536008594891379, 2.18692095830498861440865461940, 3.71589610073648110915943104635, 4.86745854549275649088650486958, 6.26373415691182703731166237286, 7.16949694773755817967264224995, 8.232379886272797760183249487025, 9.330204703659582403276758708952, 9.948296661772883470218523104855, 11.38989181369026411067706938860