Properties

Label 2-350-1.1-c5-0-36
Degree $2$
Conductor $350$
Sign $-1$
Analytic cond. $56.1343$
Root an. cond. $7.49228$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 11·3-s + 16·4-s − 44·6-s − 49·7-s − 64·8-s − 122·9-s − 267·11-s + 176·12-s + 1.08e3·13-s + 196·14-s + 256·16-s + 513·17-s + 488·18-s − 802·19-s − 539·21-s + 1.06e3·22-s + 1.29e3·23-s − 704·24-s − 4.34e3·26-s − 4.01e3·27-s − 784·28-s + 1.77e3·29-s − 2.58e3·31-s − 1.02e3·32-s − 2.93e3·33-s − 2.05e3·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.705·3-s + 1/2·4-s − 0.498·6-s − 0.377·7-s − 0.353·8-s − 0.502·9-s − 0.665·11-s + 0.352·12-s + 1.78·13-s + 0.267·14-s + 1/4·16-s + 0.430·17-s + 0.355·18-s − 0.509·19-s − 0.266·21-s + 0.470·22-s + 0.508·23-s − 0.249·24-s − 1.26·26-s − 1.05·27-s − 0.188·28-s + 0.392·29-s − 0.482·31-s − 0.176·32-s − 0.469·33-s − 0.304·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350\)    =    \(2 \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(56.1343\)
Root analytic conductor: \(7.49228\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 350,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T \)
5 \( 1 \)
7 \( 1 + p^{2} T \)
good3 \( 1 - 11 T + p^{5} T^{2} \)
11 \( 1 + 267 T + p^{5} T^{2} \)
13 \( 1 - 1087 T + p^{5} T^{2} \)
17 \( 1 - 513 T + p^{5} T^{2} \)
19 \( 1 + 802 T + p^{5} T^{2} \)
23 \( 1 - 1290 T + p^{5} T^{2} \)
29 \( 1 - 1779 T + p^{5} T^{2} \)
31 \( 1 + 2584 T + p^{5} T^{2} \)
37 \( 1 + 13862 T + p^{5} T^{2} \)
41 \( 1 + 11904 T + p^{5} T^{2} \)
43 \( 1 - 598 T + p^{5} T^{2} \)
47 \( 1 - 17019 T + p^{5} T^{2} \)
53 \( 1 + 27852 T + p^{5} T^{2} \)
59 \( 1 - 30912 T + p^{5} T^{2} \)
61 \( 1 + 1780 T + p^{5} T^{2} \)
67 \( 1 + 25052 T + p^{5} T^{2} \)
71 \( 1 + 51984 T + p^{5} T^{2} \)
73 \( 1 + 47690 T + p^{5} T^{2} \)
79 \( 1 + 102121 T + p^{5} T^{2} \)
83 \( 1 - 83676 T + p^{5} T^{2} \)
89 \( 1 + 32400 T + p^{5} T^{2} \)
97 \( 1 - 148645 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.20242003240162580897755457699, −8.909594847363771695660584004193, −8.607945881738578257862504015549, −7.61416245657015220848157960762, −6.45964758154176663310586217606, −5.48348114496744528615004206462, −3.69565242178110963316303699540, −2.83837887333414565772330317588, −1.49489331137436378747435832505, 0, 1.49489331137436378747435832505, 2.83837887333414565772330317588, 3.69565242178110963316303699540, 5.48348114496744528615004206462, 6.45964758154176663310586217606, 7.61416245657015220848157960762, 8.607945881738578257862504015549, 8.909594847363771695660584004193, 10.20242003240162580897755457699

Graph of the $Z$-function along the critical line