L(s) = 1 | − 4·2-s + 11·3-s + 16·4-s − 44·6-s − 49·7-s − 64·8-s − 122·9-s − 267·11-s + 176·12-s + 1.08e3·13-s + 196·14-s + 256·16-s + 513·17-s + 488·18-s − 802·19-s − 539·21-s + 1.06e3·22-s + 1.29e3·23-s − 704·24-s − 4.34e3·26-s − 4.01e3·27-s − 784·28-s + 1.77e3·29-s − 2.58e3·31-s − 1.02e3·32-s − 2.93e3·33-s − 2.05e3·34-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.705·3-s + 1/2·4-s − 0.498·6-s − 0.377·7-s − 0.353·8-s − 0.502·9-s − 0.665·11-s + 0.352·12-s + 1.78·13-s + 0.267·14-s + 1/4·16-s + 0.430·17-s + 0.355·18-s − 0.509·19-s − 0.266·21-s + 0.470·22-s + 0.508·23-s − 0.249·24-s − 1.26·26-s − 1.05·27-s − 0.188·28-s + 0.392·29-s − 0.482·31-s − 0.176·32-s − 0.469·33-s − 0.304·34-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(350s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+p2T |
| 5 | 1 |
| 7 | 1+p2T |
good | 3 | 1−11T+p5T2 |
| 11 | 1+267T+p5T2 |
| 13 | 1−1087T+p5T2 |
| 17 | 1−513T+p5T2 |
| 19 | 1+802T+p5T2 |
| 23 | 1−1290T+p5T2 |
| 29 | 1−1779T+p5T2 |
| 31 | 1+2584T+p5T2 |
| 37 | 1+13862T+p5T2 |
| 41 | 1+11904T+p5T2 |
| 43 | 1−598T+p5T2 |
| 47 | 1−17019T+p5T2 |
| 53 | 1+27852T+p5T2 |
| 59 | 1−30912T+p5T2 |
| 61 | 1+1780T+p5T2 |
| 67 | 1+25052T+p5T2 |
| 71 | 1+51984T+p5T2 |
| 73 | 1+47690T+p5T2 |
| 79 | 1+102121T+p5T2 |
| 83 | 1−83676T+p5T2 |
| 89 | 1+32400T+p5T2 |
| 97 | 1−148645T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.20242003240162580897755457699, −8.909594847363771695660584004193, −8.607945881738578257862504015549, −7.61416245657015220848157960762, −6.45964758154176663310586217606, −5.48348114496744528615004206462, −3.69565242178110963316303699540, −2.83837887333414565772330317588, −1.49489331137436378747435832505, 0,
1.49489331137436378747435832505, 2.83837887333414565772330317588, 3.69565242178110963316303699540, 5.48348114496744528615004206462, 6.45964758154176663310586217606, 7.61416245657015220848157960762, 8.607945881738578257862504015549, 8.909594847363771695660584004193, 10.20242003240162580897755457699