L(s) = 1 | − 4i·2-s + 9i·3-s − 16·4-s + 36·6-s − 49i·7-s + 64i·8-s + 162·9-s − 187·11-s − 144i·12-s − 627i·13-s − 196·14-s + 256·16-s + 1.81e3i·17-s − 648i·18-s − 258·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 0.577i·3-s − 0.5·4-s + 0.408·6-s − 0.377i·7-s + 0.353i·8-s + 0.666·9-s − 0.465·11-s − 0.288i·12-s − 1.02i·13-s − 0.267·14-s + 0.250·16-s + 1.52i·17-s − 0.471i·18-s − 0.163·19-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)(−0.447+0.894i)Λ(6−s)
Λ(s)=(=(350s/2ΓC(s+5/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
350
= 2⋅52⋅7
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
56.1343 |
Root analytic conductor: |
7.49228 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ350(99,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 350, ( :5/2), −0.447+0.894i)
|
Particular Values
L(3) |
≈ |
1.420245254 |
L(21) |
≈ |
1.420245254 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+4iT |
| 5 | 1 |
| 7 | 1+49iT |
good | 3 | 1−9iT−243T2 |
| 11 | 1+187T+1.61e5T2 |
| 13 | 1+627iT−3.71e5T2 |
| 17 | 1−1.81e3iT−1.41e6T2 |
| 19 | 1+258T+2.47e6T2 |
| 23 | 1+2.97e3iT−6.43e6T2 |
| 29 | 1+1.29e3T+2.05e7T2 |
| 31 | 1−1.91e3T+2.86e7T2 |
| 37 | 1−6.57e3iT−6.93e7T2 |
| 41 | 1−6.67e3T+1.15e8T2 |
| 43 | 1+3.17e3iT−1.47e8T2 |
| 47 | 1+2.20e4iT−2.29e8T2 |
| 53 | 1+2.61e4iT−4.18e8T2 |
| 59 | 1+3.93e3T+7.14e8T2 |
| 61 | 1+4.87e4T+8.44e8T2 |
| 67 | 1+4.48e4iT−1.35e9T2 |
| 71 | 1−6.37e4T+1.80e9T2 |
| 73 | 1+6.04e4iT−2.07e9T2 |
| 79 | 1−4.37e4T+3.07e9T2 |
| 83 | 1+9.72e4iT−3.93e9T2 |
| 89 | 1+4.55e4T+5.58e9T2 |
| 97 | 1+5.72e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.47906732428098559445644187128, −9.800798676645035956057119740927, −8.586251534171562978272507600477, −7.77568503572756408848118064551, −6.39280228010322361253858911285, −5.11567945929523758931851025246, −4.17578634295150094482908847181, −3.23190278568680553878919085783, −1.79968063732603726623319593322, −0.40158329257998323542529266675,
1.14858579790761004906671429919, 2.53655569775089899785250632122, 4.16030512393228373237840730476, 5.20304712749982916182773508495, 6.30866954542946591471542613957, 7.24036024944951791779626823826, 7.80849775331908746972892981901, 9.145382413939012334237956031089, 9.665237736431242843906902789257, 11.05699028783161484141450211078