L(s) = 1 | + 4i·2-s − 30.5i·3-s − 16·4-s + 122.·6-s − 49i·7-s − 64i·8-s − 688.·9-s + 392.·11-s + 488. i·12-s + 631. i·13-s + 196·14-s + 256·16-s − 1.37e3i·17-s − 2.75e3i·18-s − 1.49e3·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 1.95i·3-s − 0.5·4-s + 1.38·6-s − 0.377i·7-s − 0.353i·8-s − 2.83·9-s + 0.977·11-s + 0.978i·12-s + 1.03i·13-s + 0.267·14-s + 0.250·16-s − 1.15i·17-s − 2.00i·18-s − 0.951·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.8025866194\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8025866194\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 4iT \) |
| 5 | \( 1 \) |
| 7 | \( 1 + 49iT \) |
good | 3 | \( 1 + 30.5iT - 243T^{2} \) |
| 11 | \( 1 - 392.T + 1.61e5T^{2} \) |
| 13 | \( 1 - 631. iT - 3.71e5T^{2} \) |
| 17 | \( 1 + 1.37e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 + 1.49e3T + 2.47e6T^{2} \) |
| 23 | \( 1 - 4.57e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 2.70e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + 6.93e3T + 2.86e7T^{2} \) |
| 37 | \( 1 - 1.47e3iT - 6.93e7T^{2} \) |
| 41 | \( 1 - 1.47e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.07e4iT - 1.47e8T^{2} \) |
| 47 | \( 1 + 6.47e3iT - 2.29e8T^{2} \) |
| 53 | \( 1 + 3.26e3iT - 4.18e8T^{2} \) |
| 59 | \( 1 - 2.92e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 3.64e4T + 8.44e8T^{2} \) |
| 67 | \( 1 + 828. iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 2.80e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 7.61e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 + 1.07e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + 9.40e4iT - 3.93e9T^{2} \) |
| 89 | \( 1 - 4.35e4T + 5.58e9T^{2} \) |
| 97 | \( 1 - 3.41e4iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.36643742148251685439886779579, −9.440416966792007375264390636997, −8.731595940885389872115164538467, −7.60793472131199628171980277959, −7.04184223399755267392231652464, −6.39380842962294787202257320497, −5.34764847568626433534420757804, −3.69797883337391125816662354975, −2.05410001086205215029834011087, −1.05555474268206049894674869583,
0.22983239363143018143963558278, 2.33695878649934662924640133673, 3.58518100012768525807928308158, 4.18135769023654329170920729020, 5.27630323059252197348574169161, 6.18847043161505100473618900970, 8.358675668637472495116638971210, 8.852656148892811130877915081459, 9.750316598884825227661974465408, 10.63038558236662043244008678136