L(s) = 1 | + 4i·2-s − 30.5i·3-s − 16·4-s + 122.·6-s − 49i·7-s − 64i·8-s − 688.·9-s + 392.·11-s + 488. i·12-s + 631. i·13-s + 196·14-s + 256·16-s − 1.37e3i·17-s − 2.75e3i·18-s − 1.49e3·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 1.95i·3-s − 0.5·4-s + 1.38·6-s − 0.377i·7-s − 0.353i·8-s − 2.83·9-s + 0.977·11-s + 0.978i·12-s + 1.03i·13-s + 0.267·14-s + 0.250·16-s − 1.15i·17-s − 2.00i·18-s − 0.951·19-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)(0.447−0.894i)Λ(6−s)
Λ(s)=(=(350s/2ΓC(s+5/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
350
= 2⋅52⋅7
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
56.1343 |
Root analytic conductor: |
7.49228 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ350(99,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 350, ( :5/2), 0.447−0.894i)
|
Particular Values
L(3) |
≈ |
0.8025866194 |
L(21) |
≈ |
0.8025866194 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−4iT |
| 5 | 1 |
| 7 | 1+49iT |
good | 3 | 1+30.5iT−243T2 |
| 11 | 1−392.T+1.61e5T2 |
| 13 | 1−631.iT−3.71e5T2 |
| 17 | 1+1.37e3iT−1.41e6T2 |
| 19 | 1+1.49e3T+2.47e6T2 |
| 23 | 1−4.57e3iT−6.43e6T2 |
| 29 | 1+2.70e3T+2.05e7T2 |
| 31 | 1+6.93e3T+2.86e7T2 |
| 37 | 1−1.47e3iT−6.93e7T2 |
| 41 | 1−1.47e3T+1.15e8T2 |
| 43 | 1−1.07e4iT−1.47e8T2 |
| 47 | 1+6.47e3iT−2.29e8T2 |
| 53 | 1+3.26e3iT−4.18e8T2 |
| 59 | 1−2.92e4T+7.14e8T2 |
| 61 | 1−3.64e4T+8.44e8T2 |
| 67 | 1+828.iT−1.35e9T2 |
| 71 | 1−2.80e4T+1.80e9T2 |
| 73 | 1−7.61e4iT−2.07e9T2 |
| 79 | 1+1.07e4T+3.07e9T2 |
| 83 | 1+9.40e4iT−3.93e9T2 |
| 89 | 1−4.35e4T+5.58e9T2 |
| 97 | 1−3.41e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.36643742148251685439886779579, −9.440416966792007375264390636997, −8.731595940885389872115164538467, −7.60793472131199628171980277959, −7.04184223399755267392231652464, −6.39380842962294787202257320497, −5.34764847568626433534420757804, −3.69797883337391125816662354975, −2.05410001086205215029834011087, −1.05555474268206049894674869583,
0.22983239363143018143963558278, 2.33695878649934662924640133673, 3.58518100012768525807928308158, 4.18135769023654329170920729020, 5.27630323059252197348574169161, 6.18847043161505100473618900970, 8.358675668637472495116638971210, 8.852656148892811130877915081459, 9.750316598884825227661974465408, 10.63038558236662043244008678136