L(s) = 1 | + 3-s + 5-s + 4·7-s − 2·9-s + 11-s − 2·13-s + 15-s − 2·19-s + 4·21-s + 9·23-s − 4·25-s − 5·27-s + 4·29-s + 5·31-s + 33-s + 4·35-s − 9·37-s − 2·39-s + 2·41-s − 6·43-s − 2·45-s − 4·47-s + 9·49-s − 6·53-s + 55-s − 2·57-s − 5·59-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.447·5-s + 1.51·7-s − 2/3·9-s + 0.301·11-s − 0.554·13-s + 0.258·15-s − 0.458·19-s + 0.872·21-s + 1.87·23-s − 4/5·25-s − 0.962·27-s + 0.742·29-s + 0.898·31-s + 0.174·33-s + 0.676·35-s − 1.47·37-s − 0.320·39-s + 0.312·41-s − 0.914·43-s − 0.298·45-s − 0.583·47-s + 9/7·49-s − 0.824·53-s + 0.134·55-s − 0.264·57-s − 0.650·59-s + ⋯ |
Λ(s)=(=(352s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(352s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.839422549 |
L(21) |
≈ |
1.839422549 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1−T |
good | 3 | 1−T+pT2 |
| 5 | 1−T+pT2 |
| 7 | 1−4T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+pT2 |
| 19 | 1+2T+pT2 |
| 23 | 1−9T+pT2 |
| 29 | 1−4T+pT2 |
| 31 | 1−5T+pT2 |
| 37 | 1+9T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1+6T+pT2 |
| 47 | 1+4T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+5T+pT2 |
| 61 | 1+pT2 |
| 67 | 1+13T+pT2 |
| 71 | 1+T+pT2 |
| 73 | 1−14T+pT2 |
| 79 | 1+10T+pT2 |
| 83 | 1−14T+pT2 |
| 89 | 1+13T+pT2 |
| 97 | 1+19T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.43031674585287936480172767837, −10.65536531680425134672181778028, −9.477460186491048050604925394554, −8.595119251819881391518110548197, −7.956649639760417596283329475573, −6.77843662469483305850122200054, −5.43215102206894998656777956795, −4.57725485407179341808498131930, −2.97331376469435176368062512619, −1.71677882912616726095004967526,
1.71677882912616726095004967526, 2.97331376469435176368062512619, 4.57725485407179341808498131930, 5.43215102206894998656777956795, 6.77843662469483305850122200054, 7.956649639760417596283329475573, 8.595119251819881391518110548197, 9.477460186491048050604925394554, 10.65536531680425134672181778028, 11.43031674585287936480172767837