L(s) = 1 | − 3-s + 3·5-s − 9-s − 2·11-s + 4·13-s − 3·15-s + 6·17-s − 6·19-s + 3·23-s + 25-s + 6·29-s + 15·31-s + 2·33-s + 37-s − 4·39-s − 6·43-s − 3·45-s + 8·47-s − 14·49-s − 6·51-s − 6·55-s + 6·57-s + 13·59-s − 6·61-s + 12·65-s − 3·67-s − 3·69-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1.34·5-s − 1/3·9-s − 0.603·11-s + 1.10·13-s − 0.774·15-s + 1.45·17-s − 1.37·19-s + 0.625·23-s + 1/5·25-s + 1.11·29-s + 2.69·31-s + 0.348·33-s + 0.164·37-s − 0.640·39-s − 0.914·43-s − 0.447·45-s + 1.16·47-s − 2·49-s − 0.840·51-s − 0.809·55-s + 0.794·57-s + 1.69·59-s − 0.768·61-s + 1.48·65-s − 0.366·67-s − 0.361·69-s + ⋯ |
Λ(s)=(=(123904s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(123904s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
123904
= 210⋅112
|
Sign: |
1
|
Analytic conductor: |
7.90022 |
Root analytic conductor: |
1.67652 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 123904, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.673156847 |
L(21) |
≈ |
1.673156847 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 11 | C1 | (1+T)2 |
good | 3 | D4 | 1+T+2T2+pT3+p2T4 |
| 5 | C22 | 1−3T+8T2−3pT3+p2T4 |
| 7 | C2 | (1+pT2)2 |
| 13 | C2 | (1−2T+pT2)2 |
| 17 | D4 | 1−6T+26T2−6pT3+p2T4 |
| 19 | D4 | 1+6T+30T2+6pT3+p2T4 |
| 23 | D4 | 1−3T+10T2−3pT3+p2T4 |
| 29 | D4 | 1−6T+50T2−6pT3+p2T4 |
| 31 | D4 | 1−15T+114T2−15pT3+p2T4 |
| 37 | D4 | 1−T+36T2−pT3+p2T4 |
| 41 | C22 | 1+14T2+p2T4 |
| 43 | D4 | 1+6T+78T2+6pT3+p2T4 |
| 47 | C2 | (1−4T+pT2)2 |
| 53 | C22 | 1+38T2+p2T4 |
| 59 | D4 | 1−13T+122T2−13pT3+p2T4 |
| 61 | D4 | 1+6T−22T2+6pT3+p2T4 |
| 67 | D4 | 1+3T+98T2+3pT3+p2T4 |
| 71 | D4 | 1+19T+194T2+19pT3+p2T4 |
| 73 | C2 | (1+6T+pT2)2 |
| 79 | D4 | 1−18T+222T2−18pT3+p2T4 |
| 83 | D4 | 1+2T+14T2+2pT3+p2T4 |
| 89 | D4 | 1+3T+176T2+3pT3+p2T4 |
| 97 | D4 | 1+T+156T2+pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.71637930315705832383908896038, −11.32072987439750756990133324195, −10.55797848962274206480390322282, −10.31974112410654281292072961653, −10.06589824870708370937970806103, −9.600970605761722555739124403564, −8.720317118500883302013183754184, −8.639658734738239079781631052209, −8.017846064032105851810084781806, −7.52032751894912668633406699865, −6.51405201310665444503786570704, −6.42574959118232184729111613601, −5.85574000121122320487660419198, −5.57052142861751043992859836001, −4.80128707043152207413273055438, −4.39438615218903394977724440261, −3.30198380786633657028182233539, −2.81883750856868059259196740156, −1.93278793289298093103504980717, −1.00310502704205625408320475655,
1.00310502704205625408320475655, 1.93278793289298093103504980717, 2.81883750856868059259196740156, 3.30198380786633657028182233539, 4.39438615218903394977724440261, 4.80128707043152207413273055438, 5.57052142861751043992859836001, 5.85574000121122320487660419198, 6.42574959118232184729111613601, 6.51405201310665444503786570704, 7.52032751894912668633406699865, 8.017846064032105851810084781806, 8.639658734738239079781631052209, 8.720317118500883302013183754184, 9.600970605761722555739124403564, 10.06589824870708370937970806103, 10.31974112410654281292072961653, 10.55797848962274206480390322282, 11.32072987439750756990133324195, 11.71637930315705832383908896038