L(s) = 1 | + 1.56·3-s + 3.56·5-s − 0.561·9-s − 11-s + 2·13-s + 5.56·15-s − 1.12·17-s − 7.12·19-s − 4.68·23-s + 7.68·25-s − 5.56·27-s − 1.12·29-s + 9.56·31-s − 1.56·33-s + 6.68·37-s + 3.12·39-s + 8.24·41-s − 7.12·43-s − 2·45-s + 4·47-s − 7·49-s − 1.75·51-s − 8.24·53-s − 3.56·55-s − 11.1·57-s + 12.6·59-s − 15.3·61-s + ⋯ |
L(s) = 1 | + 0.901·3-s + 1.59·5-s − 0.187·9-s − 0.301·11-s + 0.554·13-s + 1.43·15-s − 0.272·17-s − 1.63·19-s − 0.976·23-s + 1.53·25-s − 1.07·27-s − 0.208·29-s + 1.71·31-s − 0.271·33-s + 1.09·37-s + 0.500·39-s + 1.28·41-s − 1.08·43-s − 0.298·45-s + 0.583·47-s − 49-s − 0.245·51-s − 1.13·53-s − 0.480·55-s − 1.47·57-s + 1.65·59-s − 1.96·61-s + ⋯ |
Λ(s)=(=(352s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(352s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.075325087 |
L(21) |
≈ |
2.075325087 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+T |
good | 3 | 1−1.56T+3T2 |
| 5 | 1−3.56T+5T2 |
| 7 | 1+7T2 |
| 13 | 1−2T+13T2 |
| 17 | 1+1.12T+17T2 |
| 19 | 1+7.12T+19T2 |
| 23 | 1+4.68T+23T2 |
| 29 | 1+1.12T+29T2 |
| 31 | 1−9.56T+31T2 |
| 37 | 1−6.68T+37T2 |
| 41 | 1−8.24T+41T2 |
| 43 | 1+7.12T+43T2 |
| 47 | 1−4T+47T2 |
| 53 | 1+8.24T+53T2 |
| 59 | 1−12.6T+59T2 |
| 61 | 1+15.3T+61T2 |
| 67 | 1−4.68T+67T2 |
| 71 | 1+3.31T+71T2 |
| 73 | 1+6T+73T2 |
| 79 | 1−4.87T+79T2 |
| 83 | 1+13.3T+83T2 |
| 89 | 1+3.56T+89T2 |
| 97 | 1+6.68T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.32072987439750756990133324195, −10.31974112410654281292072961653, −9.600970605761722555739124403564, −8.720317118500883302013183754184, −8.017846064032105851810084781806, −6.42574959118232184729111613601, −5.85574000121122320487660419198, −4.39438615218903394977724440261, −2.81883750856868059259196740156, −1.93278793289298093103504980717,
1.93278793289298093103504980717, 2.81883750856868059259196740156, 4.39438615218903394977724440261, 5.85574000121122320487660419198, 6.42574959118232184729111613601, 8.017846064032105851810084781806, 8.720317118500883302013183754184, 9.600970605761722555739124403564, 10.31974112410654281292072961653, 11.32072987439750756990133324195