L(s) = 1 | + 1.56·3-s + 3.56·5-s − 0.561·9-s − 11-s + 2·13-s + 5.56·15-s − 1.12·17-s − 7.12·19-s − 4.68·23-s + 7.68·25-s − 5.56·27-s − 1.12·29-s + 9.56·31-s − 1.56·33-s + 6.68·37-s + 3.12·39-s + 8.24·41-s − 7.12·43-s − 2·45-s + 4·47-s − 7·49-s − 1.75·51-s − 8.24·53-s − 3.56·55-s − 11.1·57-s + 12.6·59-s − 15.3·61-s + ⋯ |
L(s) = 1 | + 0.901·3-s + 1.59·5-s − 0.187·9-s − 0.301·11-s + 0.554·13-s + 1.43·15-s − 0.272·17-s − 1.63·19-s − 0.976·23-s + 1.53·25-s − 1.07·27-s − 0.208·29-s + 1.71·31-s − 0.271·33-s + 1.09·37-s + 0.500·39-s + 1.28·41-s − 1.08·43-s − 0.298·45-s + 0.583·47-s − 49-s − 0.245·51-s − 1.13·53-s − 0.480·55-s − 1.47·57-s + 1.65·59-s − 1.96·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.075325087\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.075325087\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + T \) |
good | 3 | \( 1 - 1.56T + 3T^{2} \) |
| 5 | \( 1 - 3.56T + 5T^{2} \) |
| 7 | \( 1 + 7T^{2} \) |
| 13 | \( 1 - 2T + 13T^{2} \) |
| 17 | \( 1 + 1.12T + 17T^{2} \) |
| 19 | \( 1 + 7.12T + 19T^{2} \) |
| 23 | \( 1 + 4.68T + 23T^{2} \) |
| 29 | \( 1 + 1.12T + 29T^{2} \) |
| 31 | \( 1 - 9.56T + 31T^{2} \) |
| 37 | \( 1 - 6.68T + 37T^{2} \) |
| 41 | \( 1 - 8.24T + 41T^{2} \) |
| 43 | \( 1 + 7.12T + 43T^{2} \) |
| 47 | \( 1 - 4T + 47T^{2} \) |
| 53 | \( 1 + 8.24T + 53T^{2} \) |
| 59 | \( 1 - 12.6T + 59T^{2} \) |
| 61 | \( 1 + 15.3T + 61T^{2} \) |
| 67 | \( 1 - 4.68T + 67T^{2} \) |
| 71 | \( 1 + 3.31T + 71T^{2} \) |
| 73 | \( 1 + 6T + 73T^{2} \) |
| 79 | \( 1 - 4.87T + 79T^{2} \) |
| 83 | \( 1 + 13.3T + 83T^{2} \) |
| 89 | \( 1 + 3.56T + 89T^{2} \) |
| 97 | \( 1 + 6.68T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.32072987439750756990133324195, −10.31974112410654281292072961653, −9.600970605761722555739124403564, −8.720317118500883302013183754184, −8.017846064032105851810084781806, −6.42574959118232184729111613601, −5.85574000121122320487660419198, −4.39438615218903394977724440261, −2.81883750856868059259196740156, −1.93278793289298093103504980717,
1.93278793289298093103504980717, 2.81883750856868059259196740156, 4.39438615218903394977724440261, 5.85574000121122320487660419198, 6.42574959118232184729111613601, 8.017846064032105851810084781806, 8.720317118500883302013183754184, 9.600970605761722555739124403564, 10.31974112410654281292072961653, 11.32072987439750756990133324195