L(s) = 1 | + (−0.780 − 2.40i)3-s + (2.30 + 1.67i)5-s + (0.780 − 2.40i)7-s + (−2.73 + 1.98i)9-s + (2.52 + 2.14i)11-s + (3.92 − 2.85i)13-s + (2.22 − 6.85i)15-s + (−4.54 − 3.30i)17-s + (0.780 + 2.40i)19-s − 6.38·21-s − 8.17·23-s + (0.972 + 2.99i)25-s + (0.780 + 0.567i)27-s + (0.427 − 1.31i)29-s + (5.35 − 3.88i)31-s + ⋯ |
L(s) = 1 | + (−0.450 − 1.38i)3-s + (1.03 + 0.750i)5-s + (0.295 − 0.908i)7-s + (−0.912 + 0.662i)9-s + (0.761 + 0.647i)11-s + (1.08 − 0.791i)13-s + (0.575 − 1.77i)15-s + (−1.10 − 0.800i)17-s + (0.179 + 0.551i)19-s − 1.39·21-s − 1.70·23-s + (0.194 + 0.598i)25-s + (0.150 + 0.109i)27-s + (0.0793 − 0.244i)29-s + (0.961 − 0.698i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.212 + 0.977i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.212 + 0.977i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.11090 - 0.895564i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.11090 - 0.895564i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (-2.52 - 2.14i)T \) |
good | 3 | \( 1 + (0.780 + 2.40i)T + (-2.42 + 1.76i)T^{2} \) |
| 5 | \( 1 + (-2.30 - 1.67i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.780 + 2.40i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-3.92 + 2.85i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (4.54 + 3.30i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.780 - 2.40i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 8.17T + 23T^{2} \) |
| 29 | \( 1 + (-0.427 + 1.31i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-5.35 + 3.88i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (0.190 - 0.587i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-2.66 - 8.19i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 3.12T + 43T^{2} \) |
| 47 | \( 1 + (0.184 + 0.567i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (0.309 - 0.224i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (3.30 - 10.1i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-2.92 - 2.12i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 13.2T + 67T^{2} \) |
| 71 | \( 1 + (-9.43 - 6.85i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-1.33 + 4.11i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (2.82 - 2.05i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-9.43 - 6.85i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 7.23T + 89T^{2} \) |
| 97 | \( 1 + (14.3 - 10.4i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.36488693847930734768703570863, −10.45323544454541444895031903361, −9.627876680177328023973410376934, −8.142185277465513659326682211584, −7.30011166184464454181512614819, −6.39793106243460855434006565220, −5.95396009283343828859561685685, −4.19183158978723017204706494482, −2.39249358730978230710493289303, −1.21618799661730450543885987417,
1.87426610640449237088014709512, 3.82044621435096490803343376403, 4.73912851782466611394473301457, 5.79389771833007636924653205474, 6.30934604862076730794952590361, 8.616325231783190068732858451917, 8.921612263948890093283339486247, 9.734850362993715757541245998700, 10.76219978367779286457532929348, 11.46449705451867148243816212207