L(s) = 1 | + (−0.852 + 2.62i)3-s + (1.35 + 1.86i)5-s + (1.08 + 3.35i)7-s + (−3.73 − 2.71i)9-s + (1.06 − 3.14i)11-s + (0.874 + 0.635i)13-s + (−6.04 + 1.96i)15-s + (0.128 + 0.176i)17-s + (−2.01 − 0.653i)19-s − 9.73·21-s − 5.68i·23-s + (−0.0920 + 0.283i)25-s + (3.60 − 2.61i)27-s + (2.14 + 6.60i)29-s + (−2.33 + 3.21i)31-s + ⋯ |
L(s) = 1 | + (−0.492 + 1.51i)3-s + (0.605 + 0.832i)5-s + (0.411 + 1.26i)7-s + (−1.24 − 0.903i)9-s + (0.321 − 0.946i)11-s + (0.242 + 0.176i)13-s + (−1.55 + 0.506i)15-s + (0.0311 + 0.0428i)17-s + (−0.461 − 0.149i)19-s − 2.12·21-s − 1.18i·23-s + (−0.0184 + 0.0566i)25-s + (0.693 − 0.503i)27-s + (0.398 + 1.22i)29-s + (−0.419 + 0.577i)31-s + ⋯ |
Λ(s)=(=(352s/2ΓC(s)L(s)(−0.732−0.680i)Λ(2−s)
Λ(s)=(=(352s/2ΓC(s+1/2)L(s)(−0.732−0.680i)Λ(1−s)
Degree: |
2 |
Conductor: |
352
= 25⋅11
|
Sign: |
−0.732−0.680i
|
Analytic conductor: |
2.81073 |
Root analytic conductor: |
1.67652 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ352(271,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 352, ( :1/2), −0.732−0.680i)
|
Particular Values
L(1) |
≈ |
0.458699+1.16690i |
L(21) |
≈ |
0.458699+1.16690i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(−1.06+3.14i)T |
good | 3 | 1+(0.852−2.62i)T+(−2.42−1.76i)T2 |
| 5 | 1+(−1.35−1.86i)T+(−1.54+4.75i)T2 |
| 7 | 1+(−1.08−3.35i)T+(−5.66+4.11i)T2 |
| 13 | 1+(−0.874−0.635i)T+(4.01+12.3i)T2 |
| 17 | 1+(−0.128−0.176i)T+(−5.25+16.1i)T2 |
| 19 | 1+(2.01+0.653i)T+(15.3+11.1i)T2 |
| 23 | 1+5.68iT−23T2 |
| 29 | 1+(−2.14−6.60i)T+(−23.4+17.0i)T2 |
| 31 | 1+(2.33−3.21i)T+(−9.57−29.4i)T2 |
| 37 | 1+(2.44−0.794i)T+(29.9−21.7i)T2 |
| 41 | 1+(3.41+1.10i)T+(33.1+24.0i)T2 |
| 43 | 1+9.45iT−43T2 |
| 47 | 1+(−12.1−3.93i)T+(38.0+27.6i)T2 |
| 53 | 1+(−5.28+7.27i)T+(−16.3−50.4i)T2 |
| 59 | 1+(−1.96−6.03i)T+(−47.7+34.6i)T2 |
| 61 | 1+(2.23−1.62i)T+(18.8−58.0i)T2 |
| 67 | 1−6.19T+67T2 |
| 71 | 1+(−1.31−1.81i)T+(−21.9+67.5i)T2 |
| 73 | 1+(1.71−0.557i)T+(59.0−42.9i)T2 |
| 79 | 1+(0.386+0.280i)T+(24.4+75.1i)T2 |
| 83 | 1+(−2.12−2.92i)T+(−25.6+78.9i)T2 |
| 89 | 1−8.99T+89T2 |
| 97 | 1+(−5.99−4.35i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.55059464142450271476511758855, −10.66473806484909880050839292907, −10.32263169266891216871878419890, −8.928703660020019011375248979653, −8.717062123342835198203789044036, −6.68714279065770331131764282792, −5.79934567126743077430563950636, −5.06105809115120818490714871526, −3.72486666570824065450792219133, −2.51773465552381306163268310117,
0.998440747121527647781988813123, 1.93393396180261147973891559175, 4.17399131242095572365961141552, 5.38364266023255405072822230281, 6.40599626292678851261569558554, 7.36130183497546521746571504807, 7.941329183843956647287546810882, 9.246232487014499894759913458091, 10.28265903745197167082482914465, 11.36639351398924816760187698343