L(s) = 1 | + (1.63 + 1.18i)3-s + (−1.62 − 0.527i)5-s + (3.70 − 2.68i)7-s + (0.333 + 1.02i)9-s + (2.77 + 1.81i)11-s + (−0.147 − 0.455i)13-s + (−2.02 − 2.79i)15-s + (2.14 + 0.696i)17-s + (−1.24 + 1.70i)19-s + 9.24·21-s + 7.45i·23-s + (−1.68 − 1.22i)25-s + (1.19 − 3.68i)27-s + (−3.30 + 2.40i)29-s + (−3.84 + 1.24i)31-s + ⋯ |
L(s) = 1 | + (0.943 + 0.685i)3-s + (−0.726 − 0.236i)5-s + (1.39 − 1.01i)7-s + (0.111 + 0.342i)9-s + (0.836 + 0.547i)11-s + (−0.0410 − 0.126i)13-s + (−0.523 − 0.720i)15-s + (0.519 + 0.168i)17-s + (−0.284 + 0.391i)19-s + 2.01·21-s + 1.55i·23-s + (−0.337 − 0.244i)25-s + (0.230 − 0.709i)27-s + (−0.614 + 0.446i)29-s + (−0.690 + 0.224i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.976 - 0.215i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.976 - 0.215i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.82442 + 0.198929i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.82442 + 0.198929i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (-2.77 - 1.81i)T \) |
good | 3 | \( 1 + (-1.63 - 1.18i)T + (0.927 + 2.85i)T^{2} \) |
| 5 | \( 1 + (1.62 + 0.527i)T + (4.04 + 2.93i)T^{2} \) |
| 7 | \( 1 + (-3.70 + 2.68i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (0.147 + 0.455i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (-2.14 - 0.696i)T + (13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (1.24 - 1.70i)T + (-5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 - 7.45iT - 23T^{2} \) |
| 29 | \( 1 + (3.30 - 2.40i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (3.84 - 1.24i)T + (25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (3.89 + 5.36i)T + (-11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (3.72 - 5.12i)T + (-12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + 5.32iT - 43T^{2} \) |
| 47 | \( 1 + (-2.59 + 3.56i)T + (-14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (-1.67 + 0.545i)T + (42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (-6.30 + 4.58i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (0.782 - 2.40i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + 4.41T + 67T^{2} \) |
| 71 | \( 1 + (4.63 + 1.50i)T + (57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (4.11 + 5.65i)T + (-22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (-5.15 - 15.8i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (5.14 + 1.67i)T + (67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + 13.0T + 89T^{2} \) |
| 97 | \( 1 + (-1.68 - 5.17i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.48687914507304626772732695050, −10.52420882743968963736655367738, −9.610851740068528235475136925062, −8.645600257669039453801862241284, −7.86687989928302382979864525869, −7.15323444985431647796746314407, −5.29333731524742810817559270573, −4.07508808628458179286058896073, −3.71040767540842620908771391603, −1.62680174736185235223632349853,
1.72130784877759638776693313205, 2.88587446305526921560828621295, 4.27726343701190746222562498586, 5.57860083968228509986276774725, 6.94064304227840441442972793755, 7.910515292097411973280577716157, 8.480759140006065559365978087151, 9.150682636038027336167383531497, 10.78565182321918911897729166968, 11.61212575290281280667854334063