Properties

Label 2-352-88.83-c1-0-6
Degree 22
Conductor 352352
Sign 0.9760.215i0.976 - 0.215i
Analytic cond. 2.810732.81073
Root an. cond. 1.676521.67652
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.63 + 1.18i)3-s + (−1.62 − 0.527i)5-s + (3.70 − 2.68i)7-s + (0.333 + 1.02i)9-s + (2.77 + 1.81i)11-s + (−0.147 − 0.455i)13-s + (−2.02 − 2.79i)15-s + (2.14 + 0.696i)17-s + (−1.24 + 1.70i)19-s + 9.24·21-s + 7.45i·23-s + (−1.68 − 1.22i)25-s + (1.19 − 3.68i)27-s + (−3.30 + 2.40i)29-s + (−3.84 + 1.24i)31-s + ⋯
L(s)  = 1  + (0.943 + 0.685i)3-s + (−0.726 − 0.236i)5-s + (1.39 − 1.01i)7-s + (0.111 + 0.342i)9-s + (0.836 + 0.547i)11-s + (−0.0410 − 0.126i)13-s + (−0.523 − 0.720i)15-s + (0.519 + 0.168i)17-s + (−0.284 + 0.391i)19-s + 2.01·21-s + 1.55i·23-s + (−0.337 − 0.244i)25-s + (0.230 − 0.709i)27-s + (−0.614 + 0.446i)29-s + (−0.690 + 0.224i)31-s + ⋯

Functional equation

Λ(s)=(352s/2ΓC(s)L(s)=((0.9760.215i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.976 - 0.215i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(352s/2ΓC(s+1/2)L(s)=((0.9760.215i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.976 - 0.215i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 352352    =    25112^{5} \cdot 11
Sign: 0.9760.215i0.976 - 0.215i
Analytic conductor: 2.810732.81073
Root analytic conductor: 1.676521.67652
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ352(303,)\chi_{352} (303, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 352, ( :1/2), 0.9760.215i)(2,\ 352,\ (\ :1/2),\ 0.976 - 0.215i)

Particular Values

L(1)L(1) \approx 1.82442+0.198929i1.82442 + 0.198929i
L(12)L(\frac12) \approx 1.82442+0.198929i1.82442 + 0.198929i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
11 1+(2.771.81i)T 1 + (-2.77 - 1.81i)T
good3 1+(1.631.18i)T+(0.927+2.85i)T2 1 + (-1.63 - 1.18i)T + (0.927 + 2.85i)T^{2}
5 1+(1.62+0.527i)T+(4.04+2.93i)T2 1 + (1.62 + 0.527i)T + (4.04 + 2.93i)T^{2}
7 1+(3.70+2.68i)T+(2.166.65i)T2 1 + (-3.70 + 2.68i)T + (2.16 - 6.65i)T^{2}
13 1+(0.147+0.455i)T+(10.5+7.64i)T2 1 + (0.147 + 0.455i)T + (-10.5 + 7.64i)T^{2}
17 1+(2.140.696i)T+(13.7+9.99i)T2 1 + (-2.14 - 0.696i)T + (13.7 + 9.99i)T^{2}
19 1+(1.241.70i)T+(5.8718.0i)T2 1 + (1.24 - 1.70i)T + (-5.87 - 18.0i)T^{2}
23 17.45iT23T2 1 - 7.45iT - 23T^{2}
29 1+(3.302.40i)T+(8.9627.5i)T2 1 + (3.30 - 2.40i)T + (8.96 - 27.5i)T^{2}
31 1+(3.841.24i)T+(25.018.2i)T2 1 + (3.84 - 1.24i)T + (25.0 - 18.2i)T^{2}
37 1+(3.89+5.36i)T+(11.4+35.1i)T2 1 + (3.89 + 5.36i)T + (-11.4 + 35.1i)T^{2}
41 1+(3.725.12i)T+(12.638.9i)T2 1 + (3.72 - 5.12i)T + (-12.6 - 38.9i)T^{2}
43 1+5.32iT43T2 1 + 5.32iT - 43T^{2}
47 1+(2.59+3.56i)T+(14.544.6i)T2 1 + (-2.59 + 3.56i)T + (-14.5 - 44.6i)T^{2}
53 1+(1.67+0.545i)T+(42.831.1i)T2 1 + (-1.67 + 0.545i)T + (42.8 - 31.1i)T^{2}
59 1+(6.30+4.58i)T+(18.256.1i)T2 1 + (-6.30 + 4.58i)T + (18.2 - 56.1i)T^{2}
61 1+(0.7822.40i)T+(49.335.8i)T2 1 + (0.782 - 2.40i)T + (-49.3 - 35.8i)T^{2}
67 1+4.41T+67T2 1 + 4.41T + 67T^{2}
71 1+(4.63+1.50i)T+(57.4+41.7i)T2 1 + (4.63 + 1.50i)T + (57.4 + 41.7i)T^{2}
73 1+(4.11+5.65i)T+(22.5+69.4i)T2 1 + (4.11 + 5.65i)T + (-22.5 + 69.4i)T^{2}
79 1+(5.1515.8i)T+(63.9+46.4i)T2 1 + (-5.15 - 15.8i)T + (-63.9 + 46.4i)T^{2}
83 1+(5.14+1.67i)T+(67.1+48.7i)T2 1 + (5.14 + 1.67i)T + (67.1 + 48.7i)T^{2}
89 1+13.0T+89T2 1 + 13.0T + 89T^{2}
97 1+(1.685.17i)T+(78.4+57.0i)T2 1 + (-1.68 - 5.17i)T + (-78.4 + 57.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.48687914507304626772732695050, −10.52420882743968963736655367738, −9.610851740068528235475136925062, −8.645600257669039453801862241284, −7.86687989928302382979864525869, −7.15323444985431647796746314407, −5.29333731524742810817559270573, −4.07508808628458179286058896073, −3.71040767540842620908771391603, −1.62680174736185235223632349853, 1.72130784877759638776693313205, 2.88587446305526921560828621295, 4.27726343701190746222562498586, 5.57860083968228509986276774725, 6.94064304227840441442972793755, 7.910515292097411973280577716157, 8.480759140006065559365978087151, 9.150682636038027336167383531497, 10.78565182321918911897729166968, 11.61212575290281280667854334063

Graph of the ZZ-function along the critical line