L(s) = 1 | + (1.68 − 2.31i)3-s + (−0.612 + 1.88i)5-s + (1.05 − 0.767i)7-s + (−1.60 − 4.92i)9-s + (0.361 − 3.29i)11-s + (3.77 − 1.22i)13-s + (3.33 + 4.58i)15-s + (−5.89 − 1.91i)17-s + (4.95 + 3.60i)19-s − 3.73i·21-s + 0.399i·23-s + (0.865 + 0.628i)25-s + (−5.92 − 1.92i)27-s + (−0.0810 − 0.111i)29-s + (−8.27 + 2.69i)31-s + ⋯ |
L(s) = 1 | + (0.970 − 1.33i)3-s + (−0.273 + 0.843i)5-s + (0.399 − 0.290i)7-s + (−0.533 − 1.64i)9-s + (0.109 − 0.994i)11-s + (1.04 − 0.340i)13-s + (0.860 + 1.18i)15-s + (−1.42 − 0.464i)17-s + (1.13 + 0.826i)19-s − 0.815i·21-s + 0.0833i·23-s + (0.173 + 0.125i)25-s + (−1.14 − 0.370i)27-s + (−0.0150 − 0.0207i)29-s + (−1.48 + 0.483i)31-s + ⋯ |
Λ(s)=(=(352s/2ΓC(s)L(s)(0.374+0.927i)Λ(2−s)
Λ(s)=(=(352s/2ΓC(s+1/2)L(s)(0.374+0.927i)Λ(1−s)
Degree: |
2 |
Conductor: |
352
= 25⋅11
|
Sign: |
0.374+0.927i
|
Analytic conductor: |
2.81073 |
Root analytic conductor: |
1.67652 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ352(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 352, ( :1/2), 0.374+0.927i)
|
Particular Values
L(1) |
≈ |
1.48641−1.00263i |
L(21) |
≈ |
1.48641−1.00263i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(−0.361+3.29i)T |
good | 3 | 1+(−1.68+2.31i)T+(−0.927−2.85i)T2 |
| 5 | 1+(0.612−1.88i)T+(−4.04−2.93i)T2 |
| 7 | 1+(−1.05+0.767i)T+(2.16−6.65i)T2 |
| 13 | 1+(−3.77+1.22i)T+(10.5−7.64i)T2 |
| 17 | 1+(5.89+1.91i)T+(13.7+9.99i)T2 |
| 19 | 1+(−4.95−3.60i)T+(5.87+18.0i)T2 |
| 23 | 1−0.399iT−23T2 |
| 29 | 1+(0.0810+0.111i)T+(−8.96+27.5i)T2 |
| 31 | 1+(8.27−2.69i)T+(25.0−18.2i)T2 |
| 37 | 1+(8.18−5.94i)T+(11.4−35.1i)T2 |
| 41 | 1+(0.410−0.565i)T+(−12.6−38.9i)T2 |
| 43 | 1−5.83T+43T2 |
| 47 | 1+(−4.56+6.28i)T+(−14.5−44.6i)T2 |
| 53 | 1+(−3.99−12.2i)T+(−42.8+31.1i)T2 |
| 59 | 1+(−1.53−2.11i)T+(−18.2+56.1i)T2 |
| 61 | 1+(−6.26−2.03i)T+(49.3+35.8i)T2 |
| 67 | 1−1.32iT−67T2 |
| 71 | 1+(9.26+3.00i)T+(57.4+41.7i)T2 |
| 73 | 1+(−1.92−2.65i)T+(−22.5+69.4i)T2 |
| 79 | 1+(−1.49−4.60i)T+(−63.9+46.4i)T2 |
| 83 | 1+(−2.12+6.54i)T+(−67.1−48.7i)T2 |
| 89 | 1+11.9T+89T2 |
| 97 | 1+(−1.61−4.96i)T+(−78.4+57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.30127668424775360993376870963, −10.65207892978607389646764280802, −9.032124675174325219469993726559, −8.416862168767850870047210888322, −7.43584441387303098825310482110, −6.85937571462708223667626968415, −5.73734917045971802847963871680, −3.70450492321192552348867049169, −2.85136042299985997275459948124, −1.35218177361844790472486595473,
2.11132383619404325593358980191, 3.72726708597064259979784033185, 4.47645281235036207352323172469, 5.33990265887801451872275509709, 7.08450721626288237400835496471, 8.378883014054627316405320231999, 8.946412648442292148917166155194, 9.487713418061466397869869312751, 10.68706173145832306109225977846, 11.41380218330147265540350693302