L(s) = 1 | + (−0.708 − 0.975i)3-s + (0.671 + 2.06i)5-s + (−1.18 − 0.858i)7-s + (0.477 − 1.47i)9-s + (3.29 − 0.371i)11-s + (5.50 + 1.78i)13-s + (1.54 − 2.11i)15-s + (−2.83 + 0.921i)17-s + (4.63 − 3.36i)19-s + 1.76i·21-s − 0.400i·23-s + (0.222 − 0.162i)25-s + (−5.21 + 1.69i)27-s + (2.26 − 3.11i)29-s + (1.41 + 0.460i)31-s + ⋯ |
L(s) = 1 | + (−0.409 − 0.563i)3-s + (0.300 + 0.924i)5-s + (−0.446 − 0.324i)7-s + (0.159 − 0.490i)9-s + (0.993 − 0.112i)11-s + (1.52 + 0.496i)13-s + (0.397 − 0.547i)15-s + (−0.688 + 0.223i)17-s + (1.06 − 0.773i)19-s + 0.384i·21-s − 0.0834i·23-s + (0.0445 − 0.0324i)25-s + (−1.00 + 0.325i)27-s + (0.419 − 0.577i)29-s + (0.254 + 0.0827i)31-s + ⋯ |
Λ(s)=(=(352s/2ΓC(s)L(s)(0.928+0.371i)Λ(2−s)
Λ(s)=(=(352s/2ΓC(s+1/2)L(s)(0.928+0.371i)Λ(1−s)
Degree: |
2 |
Conductor: |
352
= 25⋅11
|
Sign: |
0.928+0.371i
|
Analytic conductor: |
2.81073 |
Root analytic conductor: |
1.67652 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ352(255,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 352, ( :1/2), 0.928+0.371i)
|
Particular Values
L(1) |
≈ |
1.28397−0.247514i |
L(21) |
≈ |
1.28397−0.247514i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(−3.29+0.371i)T |
good | 3 | 1+(0.708+0.975i)T+(−0.927+2.85i)T2 |
| 5 | 1+(−0.671−2.06i)T+(−4.04+2.93i)T2 |
| 7 | 1+(1.18+0.858i)T+(2.16+6.65i)T2 |
| 13 | 1+(−5.50−1.78i)T+(10.5+7.64i)T2 |
| 17 | 1+(2.83−0.921i)T+(13.7−9.99i)T2 |
| 19 | 1+(−4.63+3.36i)T+(5.87−18.0i)T2 |
| 23 | 1+0.400iT−23T2 |
| 29 | 1+(−2.26+3.11i)T+(−8.96−27.5i)T2 |
| 31 | 1+(−1.41−0.460i)T+(25.0+18.2i)T2 |
| 37 | 1+(−5.01−3.64i)T+(11.4+35.1i)T2 |
| 41 | 1+(2.50+3.45i)T+(−12.6+38.9i)T2 |
| 43 | 1+6.17T+43T2 |
| 47 | 1+(−4.79−6.59i)T+(−14.5+44.6i)T2 |
| 53 | 1+(0.633−1.95i)T+(−42.8−31.1i)T2 |
| 59 | 1+(7.19−9.90i)T+(−18.2−56.1i)T2 |
| 61 | 1+(12.4−4.04i)T+(49.3−35.8i)T2 |
| 67 | 1−2.72iT−67T2 |
| 71 | 1+(9.62−3.12i)T+(57.4−41.7i)T2 |
| 73 | 1+(−2.77+3.81i)T+(−22.5−69.4i)T2 |
| 79 | 1+(−2.34+7.20i)T+(−63.9−46.4i)T2 |
| 83 | 1+(−3.31−10.1i)T+(−67.1+48.7i)T2 |
| 89 | 1−1.16T+89T2 |
| 97 | 1+(−5.15+15.8i)T+(−78.4−57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.44580862333842496688687355265, −10.67941624305425089404377904894, −9.575294321717000810405467587978, −8.756062509258203765013011657132, −7.25986730883858073152639028279, −6.48022865854748868141812826718, −6.12428658234786361521634115648, −4.20446104662802386995652678060, −3.09622701487837386607545644637, −1.25649251891578657702648337296,
1.42263940345758538707034452194, 3.46953802390108562422197242324, 4.63911690629511071425429934332, 5.59247162323690720421559975825, 6.46382918777164106649177604987, 7.955572447432593493982841242285, 8.962213505370088266384374181336, 9.587882318764931725183754004772, 10.63226564925529209691446934824, 11.47493703526182201529154926437