L(s) = 1 | + (2.26 − 0.734i)3-s + (0.0210 + 0.0153i)5-s + (0.140 − 0.432i)7-s + (2.14 − 1.55i)9-s + (3.11 + 1.12i)11-s + (−1.27 − 1.76i)13-s + (0.0589 + 0.0191i)15-s + (1.94 − 2.67i)17-s + (0.802 + 2.47i)19-s − 1.07i·21-s + 3.69i·23-s + (−1.54 − 4.75i)25-s + (−0.488 + 0.671i)27-s + (−9.31 − 3.02i)29-s + (1.81 + 2.49i)31-s + ⋯ |
L(s) = 1 | + (1.30 − 0.424i)3-s + (0.00943 + 0.00685i)5-s + (0.0530 − 0.163i)7-s + (0.714 − 0.519i)9-s + (0.940 + 0.340i)11-s + (−0.354 − 0.488i)13-s + (0.0152 + 0.00494i)15-s + (0.470 − 0.647i)17-s + (0.184 + 0.566i)19-s − 0.235i·21-s + 0.770i·23-s + (−0.308 − 0.950i)25-s + (−0.0939 + 0.129i)27-s + (−1.73 − 0.562i)29-s + (0.325 + 0.448i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.906 + 0.421i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.906 + 0.421i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.97335 - 0.435873i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.97335 - 0.435873i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (-3.11 - 1.12i)T \) |
good | 3 | \( 1 + (-2.26 + 0.734i)T + (2.42 - 1.76i)T^{2} \) |
| 5 | \( 1 + (-0.0210 - 0.0153i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.140 + 0.432i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (1.27 + 1.76i)T + (-4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-1.94 + 2.67i)T + (-5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.802 - 2.47i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 3.69iT - 23T^{2} \) |
| 29 | \( 1 + (9.31 + 3.02i)T + (23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-1.81 - 2.49i)T + (-9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (2.27 - 7.00i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (3.59 - 1.16i)T + (33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 10.2T + 43T^{2} \) |
| 47 | \( 1 + (-10.7 + 3.47i)T + (38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-7.06 + 5.13i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (6.16 + 2.00i)T + (47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (7.78 - 10.7i)T + (-18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 8.31iT - 67T^{2} \) |
| 71 | \( 1 + (-2.37 + 3.26i)T + (-21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (3.48 + 1.13i)T + (59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-2.29 + 1.66i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-1.28 - 0.934i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 11.9T + 89T^{2} \) |
| 97 | \( 1 + (-0.120 + 0.0875i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.65794466257011388395348569629, −10.19108165941962337241855261041, −9.481712322285158818063682031139, −8.559862231524703747543427585816, −7.69156684892840039003614201630, −6.97514734082246030322455857381, −5.55788881836140918897842394385, −4.04090732274860988021536861619, −3.00460832261600005842325277960, −1.66230075470952485835856993064,
1.96209150963325959685292842980, 3.34503207207568131748700701441, 4.16267140549810298121270510965, 5.62538884593340010985027652882, 6.96396957888349761723800930162, 7.954954574357537728764657013894, 9.069023838473556106727934820584, 9.251884669551878705970602722293, 10.48119967795074845648770327790, 11.51989012916702720551200537656