L(s) = 1 | + (−2.56 − 0.832i)3-s + (1.18 − 0.862i)5-s + (0.845 + 2.60i)7-s + (3.45 + 2.50i)9-s + (0.122 − 3.31i)11-s + (1.50 − 2.06i)13-s + (−3.76 + 1.22i)15-s + (−3.48 − 4.79i)17-s + (0.531 − 1.63i)19-s − 7.37i·21-s − 7.75i·23-s + (−0.880 + 2.70i)25-s + (−2.00 − 2.76i)27-s + (−3.07 + 0.997i)29-s + (3.93 − 5.42i)31-s + ⋯ |
L(s) = 1 | + (−1.48 − 0.480i)3-s + (0.530 − 0.385i)5-s + (0.319 + 0.983i)7-s + (1.15 + 0.835i)9-s + (0.0369 − 0.999i)11-s + (0.417 − 0.574i)13-s + (−0.971 + 0.315i)15-s + (−0.844 − 1.16i)17-s + (0.121 − 0.375i)19-s − 1.60i·21-s − 1.61i·23-s + (−0.176 + 0.541i)25-s + (−0.385 − 0.531i)27-s + (−0.570 + 0.185i)29-s + (0.707 − 0.973i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0505 + 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0505 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.596122 - 0.566719i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.596122 - 0.566719i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (-0.122 + 3.31i)T \) |
good | 3 | \( 1 + (2.56 + 0.832i)T + (2.42 + 1.76i)T^{2} \) |
| 5 | \( 1 + (-1.18 + 0.862i)T + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.845 - 2.60i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-1.50 + 2.06i)T + (-4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (3.48 + 4.79i)T + (-5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.531 + 1.63i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 7.75iT - 23T^{2} \) |
| 29 | \( 1 + (3.07 - 0.997i)T + (23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-3.93 + 5.42i)T + (-9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (2.50 + 7.70i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-10.8 - 3.52i)T + (33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 0.0675T + 43T^{2} \) |
| 47 | \( 1 + (-6.48 - 2.10i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (4.99 + 3.62i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (5.13 - 1.66i)T + (47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-4.35 - 5.99i)T + (-18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 11.2iT - 67T^{2} \) |
| 71 | \( 1 + (5.04 + 6.94i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (15.1 - 4.92i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-8.56 - 6.22i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-0.450 + 0.327i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 13.1T + 89T^{2} \) |
| 97 | \( 1 + (0.746 + 0.542i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.26975420272922396273684384458, −10.76310524724997059335282430308, −9.340278094503294185684561595490, −8.561216163316896216510515356307, −7.22760976117057139549363050878, −6.00579410794434492146944361799, −5.68245455420459125418860044876, −4.63455771416533331232222753180, −2.49655641005377661232666102515, −0.72267387842385340706258042222,
1.61182175331215470788658077674, 3.95137733424658695940010867389, 4.74180280516005593911758352121, 5.95181059510808475910608319676, 6.65127578632235603636701077911, 7.67327903275739811939027274197, 9.266147766768505149457525921492, 10.27703530740919759485088712373, 10.65153255250700739083255625892, 11.52475421082400836842439139354