L(s) = 1 | + (2.62 − 0.852i)3-s + (1.70 − 2.35i)5-s + (−0.730 + 2.24i)7-s + (3.72 − 2.70i)9-s + (−2.02 + 2.62i)11-s + (1.49 + 2.05i)13-s + (2.47 − 7.62i)15-s + (−4.77 − 3.46i)17-s + (0.252 − 0.0821i)19-s + 6.51i·21-s − 4.18·23-s + (−1.06 − 3.27i)25-s + (2.60 − 3.58i)27-s + (−3.08 − 1.00i)29-s + (1.66 − 1.20i)31-s + ⋯ |
L(s) = 1 | + (1.51 − 0.492i)3-s + (0.763 − 1.05i)5-s + (−0.276 + 0.849i)7-s + (1.24 − 0.902i)9-s + (−0.609 + 0.792i)11-s + (0.414 + 0.571i)13-s + (0.639 − 1.96i)15-s + (−1.15 − 0.841i)17-s + (0.0580 − 0.0188i)19-s + 1.42i·21-s − 0.871·23-s + (−0.212 − 0.654i)25-s + (0.500 − 0.689i)27-s + (−0.573 − 0.186i)29-s + (0.298 − 0.217i)31-s + ⋯ |
Λ(s)=(=(352s/2ΓC(s)L(s)(0.829+0.559i)Λ(2−s)
Λ(s)=(=(352s/2ΓC(s+1/2)L(s)(0.829+0.559i)Λ(1−s)
Degree: |
2 |
Conductor: |
352
= 25⋅11
|
Sign: |
0.829+0.559i
|
Analytic conductor: |
2.81073 |
Root analytic conductor: |
1.67652 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ352(113,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 352, ( :1/2), 0.829+0.559i)
|
Particular Values
L(1) |
≈ |
2.12049−0.648326i |
L(21) |
≈ |
2.12049−0.648326i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(2.02−2.62i)T |
good | 3 | 1+(−2.62+0.852i)T+(2.42−1.76i)T2 |
| 5 | 1+(−1.70+2.35i)T+(−1.54−4.75i)T2 |
| 7 | 1+(0.730−2.24i)T+(−5.66−4.11i)T2 |
| 13 | 1+(−1.49−2.05i)T+(−4.01+12.3i)T2 |
| 17 | 1+(4.77+3.46i)T+(5.25+16.1i)T2 |
| 19 | 1+(−0.252+0.0821i)T+(15.3−11.1i)T2 |
| 23 | 1+4.18T+23T2 |
| 29 | 1+(3.08+1.00i)T+(23.4+17.0i)T2 |
| 31 | 1+(−1.66+1.20i)T+(9.57−29.4i)T2 |
| 37 | 1+(−0.740−0.240i)T+(29.9+21.7i)T2 |
| 41 | 1+(−0.927−2.85i)T+(−33.1+24.0i)T2 |
| 43 | 1−1.14iT−43T2 |
| 47 | 1+(2.98+9.17i)T+(−38.0+27.6i)T2 |
| 53 | 1+(−5.77−7.94i)T+(−16.3+50.4i)T2 |
| 59 | 1+(−5.50−1.78i)T+(47.7+34.6i)T2 |
| 61 | 1+(−3.60+4.96i)T+(−18.8−58.0i)T2 |
| 67 | 1+0.241iT−67T2 |
| 71 | 1+(3.19+2.31i)T+(21.9+67.5i)T2 |
| 73 | 1+(1.96−6.04i)T+(−59.0−42.9i)T2 |
| 79 | 1+(4.19−3.04i)T+(24.4−75.1i)T2 |
| 83 | 1+(−8.95+12.3i)T+(−25.6−78.9i)T2 |
| 89 | 1+16.2T+89T2 |
| 97 | 1+(−5.90+4.29i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.66739284801292902470377847160, −9.994814290080342838487945727562, −9.201954348455272815367697659254, −8.823008674356638428614657349858, −7.86212528462603334593609489034, −6.74383944630310251337112664784, −5.47047049541208169219723206118, −4.25394767386274719076506209493, −2.59598944853824244675385087426, −1.85708300933882109647483822960,
2.23288382344851194260233454700, 3.22349253358061459609767067357, 4.07794101290353225831727484526, 5.84918372282719075067619729096, 6.91006121730906886114712630420, 7.993019095499844344006061594710, 8.738078400104865773526066457070, 9.870627845106617380209994634700, 10.42050634650237511566516760911, 11.08322561976670536056240802510