L(s) = 1 | + (0.582 − 0.189i)3-s + (−0.858 + 1.18i)5-s + (−1.36 + 4.21i)7-s + (−2.12 + 1.54i)9-s + (−2.69 + 1.93i)11-s + (−3.27 − 4.50i)13-s + (−0.276 + 0.850i)15-s + (2.06 + 1.50i)17-s + (2.87 − 0.933i)19-s + 2.71i·21-s + 3.70·23-s + (0.886 + 2.72i)25-s + (−2.02 + 2.78i)27-s + (3.48 + 1.13i)29-s + (1.20 − 0.876i)31-s + ⋯ |
L(s) = 1 | + (0.336 − 0.109i)3-s + (−0.383 + 0.528i)5-s + (−0.517 + 1.59i)7-s + (−0.707 + 0.514i)9-s + (−0.811 + 0.584i)11-s + (−0.908 − 1.25i)13-s + (−0.0713 + 0.219i)15-s + (0.501 + 0.364i)17-s + (0.658 − 0.214i)19-s + 0.591i·21-s + 0.773·23-s + (0.177 + 0.545i)25-s + (−0.389 + 0.536i)27-s + (0.646 + 0.209i)29-s + (0.216 − 0.157i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.362 - 0.932i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.362 - 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.538109 + 0.786521i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.538109 + 0.786521i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (2.69 - 1.93i)T \) |
good | 3 | \( 1 + (-0.582 + 0.189i)T + (2.42 - 1.76i)T^{2} \) |
| 5 | \( 1 + (0.858 - 1.18i)T + (-1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (1.36 - 4.21i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (3.27 + 4.50i)T + (-4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-2.06 - 1.50i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-2.87 + 0.933i)T + (15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 3.70T + 23T^{2} \) |
| 29 | \( 1 + (-3.48 - 1.13i)T + (23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-1.20 + 0.876i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.41 - 0.460i)T + (29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.970 - 2.98i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 6.25iT - 43T^{2} \) |
| 47 | \( 1 + (-0.821 - 2.52i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-5.75 - 7.92i)T + (-16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-2.45 - 0.796i)T + (47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (3.28 - 4.51i)T + (-18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 11.5iT - 67T^{2} \) |
| 71 | \( 1 + (-0.909 - 0.660i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-4.36 + 13.4i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-0.619 + 0.450i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (5.03 - 6.92i)T + (-25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 8.84T + 89T^{2} \) |
| 97 | \( 1 + (-0.241 + 0.175i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.90182850425433833496953353769, −10.81498168967777664590787163123, −9.916550581096086060846570344136, −8.913548855960224507622993697164, −7.993495003839717367719290363504, −7.22299053829820748943282944406, −5.72467065889602698625336004896, −5.13292582710670235986446925545, −3.00911810451099059063107542960, −2.61721445623282846499850796311,
0.61388405386499024225865285607, 2.93732452195337259853817671863, 4.00870037131012106789797311325, 5.06142786117801898677767509941, 6.54598665635207576652885652312, 7.45185210938260658276553600247, 8.352333335279250178355384992024, 9.424428668279162609352686214967, 10.14199365434962644369535468032, 11.23303357930251296268241409641