L(s) = 1 | + (0.809 + 0.587i)5-s + (0.587 − 1.80i)7-s + (0.809 − 0.587i)9-s + (−0.951 − 0.309i)11-s + (0.690 + 0.951i)13-s + (0.363 + 1.11i)19-s + 0.618i·23-s + (0.309 + 0.951i)25-s + (1.53 − 1.11i)35-s + (0.5 − 1.53i)37-s + (−1.80 + 0.587i)41-s + 45-s + (1.53 − 0.5i)47-s + (−2.11 − 1.53i)49-s + (0.5 − 0.363i)53-s + ⋯ |
L(s) = 1 | + (0.809 + 0.587i)5-s + (0.587 − 1.80i)7-s + (0.809 − 0.587i)9-s + (−0.951 − 0.309i)11-s + (0.690 + 0.951i)13-s + (0.363 + 1.11i)19-s + 0.618i·23-s + (0.309 + 0.951i)25-s + (1.53 − 1.11i)35-s + (0.5 − 1.53i)37-s + (−1.80 + 0.587i)41-s + 45-s + (1.53 − 0.5i)47-s + (−2.11 − 1.53i)49-s + (0.5 − 0.363i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.920 + 0.390i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.920 + 0.390i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.673553410\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.673553410\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.809 - 0.587i)T \) |
| 11 | \( 1 + (0.951 + 0.309i)T \) |
good | 3 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 7 | \( 1 + (-0.587 + 1.80i)T + (-0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.690 - 0.951i)T + (-0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.363 - 1.11i)T + (-0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 - 0.618iT - T^{2} \) |
| 29 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (1.80 - 0.587i)T + (0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (-1.53 + 0.5i)T + (0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (-0.5 + 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (1.53 + 0.5i)T + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 + 0.618T + T^{2} \) |
| 97 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.708991565325419957629718537305, −7.68242847231942615138292443465, −7.29405098543058058467303623190, −6.57379236763996831988261824026, −5.80718836649660275768000981074, −4.84311045653000274219134149131, −3.90656357107299453710256194397, −3.44500958553286535428216533616, −1.94410431995240784615811881094, −1.18370455312324631337297369549,
1.39295930296836959393308209396, 2.34473772972143154755191844756, 2.90553225715869771878895300054, 4.60051241811588135340009764360, 5.07251534307986526443706616815, 5.62391385764842093682089964530, 6.36706251859616300651514546320, 7.47342617393161759536669347629, 8.273326240036432605885408296606, 8.699427055656215141127633980189