Properties

Label 4-3520e2-1.1-c0e2-0-1
Degree $4$
Conductor $12390400$
Sign $1$
Analytic cond. $3.08602$
Root an. cond. $1.32540$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 2·9-s + 3·25-s − 4·37-s + 4·45-s − 2·49-s − 4·53-s + 3·81-s − 4·89-s − 121-s − 4·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + 181-s + 8·185-s + 191-s + 193-s + ⋯
L(s)  = 1  − 2·5-s − 2·9-s + 3·25-s − 4·37-s + 4·45-s − 2·49-s − 4·53-s + 3·81-s − 4·89-s − 121-s − 4·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + 181-s + 8·185-s + 191-s + 193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12390400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12390400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(12390400\)    =    \(2^{12} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(3.08602\)
Root analytic conductor: \(1.32540\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 12390400,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.09049949392\)
\(L(\frac12)\) \(\approx\) \(0.09049949392\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 + T )^{2} \)
11$C_2$ \( 1 + T^{2} \)
good3$C_2$ \( ( 1 + T^{2} )^{2} \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
17$C_2$ \( ( 1 + T^{2} )^{2} \)
19$C_2$ \( ( 1 + T^{2} )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_2$ \( ( 1 + T^{2} )^{2} \)
37$C_1$ \( ( 1 + T )^{4} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
47$C_2$ \( ( 1 + T^{2} )^{2} \)
53$C_1$ \( ( 1 + T )^{4} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_2$ \( ( 1 + T^{2} )^{2} \)
67$C_2$ \( ( 1 + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_2$ \( ( 1 + T^{2} )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_1$ \( ( 1 + T )^{4} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.906272173887560652249424208287, −8.391125004428543911437387827701, −8.239777849152239474998307888799, −7.904789609333678077107079491194, −7.70361026860171457198786144363, −6.89215499809786808363089351634, −6.88052814560047899578070815707, −6.51000948881895579438659990939, −5.93019594615811831594958349597, −5.36136573580389731364830629085, −5.22799277169442149717506573343, −4.71755390172079802577866346334, −4.38005243966857215626882863804, −3.76688908177301172060046679210, −3.33632972757570360585191736771, −3.04826805153953325300783283596, −2.96693692365797606635619518738, −1.94035255978083368585762446169, −1.42428804254149585396632902344, −0.17542455797828592980790210424, 0.17542455797828592980790210424, 1.42428804254149585396632902344, 1.94035255978083368585762446169, 2.96693692365797606635619518738, 3.04826805153953325300783283596, 3.33632972757570360585191736771, 3.76688908177301172060046679210, 4.38005243966857215626882863804, 4.71755390172079802577866346334, 5.22799277169442149717506573343, 5.36136573580389731364830629085, 5.93019594615811831594958349597, 6.51000948881895579438659990939, 6.88052814560047899578070815707, 6.89215499809786808363089351634, 7.70361026860171457198786144363, 7.904789609333678077107079491194, 8.239777849152239474998307888799, 8.391125004428543911437387827701, 8.906272173887560652249424208287

Graph of the $Z$-function along the critical line