L(s) = 1 | − 2·5-s − 2·9-s + 3·25-s − 4·37-s + 4·45-s − 2·49-s − 4·53-s + 3·81-s − 4·89-s − 121-s − 4·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + 181-s + 8·185-s + 191-s + 193-s + ⋯ |
L(s) = 1 | − 2·5-s − 2·9-s + 3·25-s − 4·37-s + 4·45-s − 2·49-s − 4·53-s + 3·81-s − 4·89-s − 121-s − 4·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + 181-s + 8·185-s + 191-s + 193-s + ⋯ |
Λ(s)=(=(12390400s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(12390400s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
12390400
= 212⋅52⋅112
|
Sign: |
1
|
Analytic conductor: |
3.08602 |
Root analytic conductor: |
1.32540 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 12390400, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
0.09049949392 |
L(21) |
≈ |
0.09049949392 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | (1+T)2 |
| 11 | C2 | 1+T2 |
good | 3 | C2 | (1+T2)2 |
| 7 | C2 | (1+T2)2 |
| 13 | C1×C1 | (1−T)2(1+T)2 |
| 17 | C2 | (1+T2)2 |
| 19 | C2 | (1+T2)2 |
| 23 | C2 | (1+T2)2 |
| 29 | C2 | (1+T2)2 |
| 31 | C2 | (1+T2)2 |
| 37 | C1 | (1+T)4 |
| 41 | C1×C1 | (1−T)2(1+T)2 |
| 43 | C1×C1 | (1−T)2(1+T)2 |
| 47 | C2 | (1+T2)2 |
| 53 | C1 | (1+T)4 |
| 59 | C2 | (1+T2)2 |
| 61 | C2 | (1+T2)2 |
| 67 | C2 | (1+T2)2 |
| 71 | C2 | (1+T2)2 |
| 73 | C2 | (1+T2)2 |
| 79 | C1×C1 | (1−T)2(1+T)2 |
| 83 | C1×C1 | (1−T)2(1+T)2 |
| 89 | C1 | (1+T)4 |
| 97 | C1×C1 | (1−T)2(1+T)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.906272173887560652249424208287, −8.391125004428543911437387827701, −8.239777849152239474998307888799, −7.904789609333678077107079491194, −7.70361026860171457198786144363, −6.89215499809786808363089351634, −6.88052814560047899578070815707, −6.51000948881895579438659990939, −5.93019594615811831594958349597, −5.36136573580389731364830629085, −5.22799277169442149717506573343, −4.71755390172079802577866346334, −4.38005243966857215626882863804, −3.76688908177301172060046679210, −3.33632972757570360585191736771, −3.04826805153953325300783283596, −2.96693692365797606635619518738, −1.94035255978083368585762446169, −1.42428804254149585396632902344, −0.17542455797828592980790210424,
0.17542455797828592980790210424, 1.42428804254149585396632902344, 1.94035255978083368585762446169, 2.96693692365797606635619518738, 3.04826805153953325300783283596, 3.33632972757570360585191736771, 3.76688908177301172060046679210, 4.38005243966857215626882863804, 4.71755390172079802577866346334, 5.22799277169442149717506573343, 5.36136573580389731364830629085, 5.93019594615811831594958349597, 6.51000948881895579438659990939, 6.88052814560047899578070815707, 6.89215499809786808363089351634, 7.70361026860171457198786144363, 7.904789609333678077107079491194, 8.239777849152239474998307888799, 8.391125004428543911437387827701, 8.906272173887560652249424208287