L(s) = 1 | − 3-s + (−0.5 − 0.866i)4-s + (0.866 + 0.5i)7-s + 9-s + (0.5 + 0.866i)12-s + (−0.499 + 0.866i)16-s + 1.73·19-s + (−0.866 − 0.5i)21-s + (−0.5 + 0.866i)25-s − 27-s − 0.999i·28-s + (−0.5 − 0.866i)36-s + (−0.866 + 1.5i)37-s + (−0.5 + 0.866i)43-s + (0.499 − 0.866i)48-s + (0.499 + 0.866i)49-s + ⋯ |
L(s) = 1 | − 3-s + (−0.5 − 0.866i)4-s + (0.866 + 0.5i)7-s + 9-s + (0.5 + 0.866i)12-s + (−0.499 + 0.866i)16-s + 1.73·19-s + (−0.866 − 0.5i)21-s + (−0.5 + 0.866i)25-s − 27-s − 0.999i·28-s + (−0.5 − 0.866i)36-s + (−0.866 + 1.5i)37-s + (−0.5 + 0.866i)43-s + (0.499 − 0.866i)48-s + (0.499 + 0.866i)49-s + ⋯ |
Λ(s)=(=(3549s/2ΓC(s)L(s)(0.990−0.139i)Λ(1−s)
Λ(s)=(=(3549s/2ΓC(s)L(s)(0.990−0.139i)Λ(1−s)
Degree: |
2 |
Conductor: |
3549
= 3⋅7⋅132
|
Sign: |
0.990−0.139i
|
Analytic conductor: |
1.77118 |
Root analytic conductor: |
1.33085 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3549(2174,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3549, ( :0), 0.990−0.139i)
|
Particular Values
L(21) |
≈ |
0.8921794106 |
L(21) |
≈ |
0.8921794106 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 7 | 1+(−0.866−0.5i)T |
| 13 | 1 |
good | 2 | 1+(0.5+0.866i)T2 |
| 5 | 1+(0.5−0.866i)T2 |
| 11 | 1−T2 |
| 17 | 1+(0.5−0.866i)T2 |
| 19 | 1−1.73T+T2 |
| 23 | 1+(0.5+0.866i)T2 |
| 29 | 1+(0.5−0.866i)T2 |
| 31 | 1+(−0.5−0.866i)T2 |
| 37 | 1+(0.866−1.5i)T+(−0.5−0.866i)T2 |
| 41 | 1+(0.5−0.866i)T2 |
| 43 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 47 | 1+(0.5−0.866i)T2 |
| 53 | 1+(0.5+0.866i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1−T+T2 |
| 67 | 1+T2 |
| 71 | 1+(0.5+0.866i)T2 |
| 73 | 1+(−0.866+1.5i)T+(−0.5−0.866i)T2 |
| 79 | 1+(−1−1.73i)T+(−0.5+0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5+0.866i)T2 |
| 97 | 1+(−0.866+1.5i)T+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.854493954420810501310521651293, −7.997266133602546652588713713350, −7.19663746893793478089787504008, −6.34038179679990419652841850851, −5.54398975601875905315996244358, −5.14130230764624880779601567602, −4.53342165615795607515502366629, −3.39115628028124324791652960012, −1.84481440351503140923931631100, −1.08340420957720380407399075401,
0.77440089446680880906395584582, 2.10970033671160731325855042671, 3.53516288693393150077187806848, 4.12440998102278788896947307124, 5.04748239900065121897531305448, 5.43386561857907410451119919919, 6.61548764226214595588877172002, 7.40314273065301028948618159004, 7.76307429010896620177476744628, 8.659853058124347021694441080486