L(s) = 1 | − 3-s + (−0.5 − 0.866i)4-s + (0.866 + 0.5i)7-s + 9-s + (0.5 + 0.866i)12-s + (−0.499 + 0.866i)16-s + 1.73·19-s + (−0.866 − 0.5i)21-s + (−0.5 + 0.866i)25-s − 27-s − 0.999i·28-s + (−0.5 − 0.866i)36-s + (−0.866 + 1.5i)37-s + (−0.5 + 0.866i)43-s + (0.499 − 0.866i)48-s + (0.499 + 0.866i)49-s + ⋯ |
L(s) = 1 | − 3-s + (−0.5 − 0.866i)4-s + (0.866 + 0.5i)7-s + 9-s + (0.5 + 0.866i)12-s + (−0.499 + 0.866i)16-s + 1.73·19-s + (−0.866 − 0.5i)21-s + (−0.5 + 0.866i)25-s − 27-s − 0.999i·28-s + (−0.5 − 0.866i)36-s + (−0.866 + 1.5i)37-s + (−0.5 + 0.866i)43-s + (0.499 − 0.866i)48-s + (0.499 + 0.866i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3549 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.990 - 0.139i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3549 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.990 - 0.139i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8921794106\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8921794106\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 - 1.73T + T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 - T + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.854493954420810501310521651293, −7.997266133602546652588713713350, −7.19663746893793478089787504008, −6.34038179679990419652841850851, −5.54398975601875905315996244358, −5.14130230764624880779601567602, −4.53342165615795607515502366629, −3.39115628028124324791652960012, −1.84481440351503140923931631100, −1.08340420957720380407399075401,
0.77440089446680880906395584582, 2.10970033671160731325855042671, 3.53516288693393150077187806848, 4.12440998102278788896947307124, 5.04748239900065121897531305448, 5.43386561857907410451119919919, 6.61548764226214595588877172002, 7.40314273065301028948618159004, 7.76307429010896620177476744628, 8.659853058124347021694441080486