Properties

Label 8-3549e4-1.1-c0e4-0-24
Degree $8$
Conductor $1.586\times 10^{14}$
Sign $1$
Analytic cond. $9.84130$
Root an. cond. $1.33085$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 4·4-s + 9-s + 8·12-s + 10·16-s − 2·25-s − 2·27-s + 4·36-s − 2·43-s + 20·48-s + 49-s − 2·61-s + 20·64-s − 4·75-s + 4·79-s − 4·81-s − 8·100-s − 2·103-s − 8·108-s − 2·121-s + 127-s − 4·129-s + 131-s + 137-s + 139-s + 10·144-s + 2·147-s + ⋯
L(s)  = 1  + 2·3-s + 4·4-s + 9-s + 8·12-s + 10·16-s − 2·25-s − 2·27-s + 4·36-s − 2·43-s + 20·48-s + 49-s − 2·61-s + 20·64-s − 4·75-s + 4·79-s − 4·81-s − 8·100-s − 2·103-s − 8·108-s − 2·121-s + 127-s − 4·129-s + 131-s + 137-s + 139-s + 10·144-s + 2·147-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 7^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 7^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 7^{4} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(9.84130\)
Root analytic conductor: \(1.33085\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 7^{4} \cdot 13^{8} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(11.48426278\)
\(L(\frac12)\) \(\approx\) \(11.48426278\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( ( 1 - T + T^{2} )^{2} \)
7$C_2^2$ \( 1 - T^{2} + T^{4} \)
13 \( 1 \)
good2$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
5$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
11$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
19$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
29$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
31$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
41$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
43$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
47$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
53$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
61$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
67$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
71$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
73$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
79$C_2$ \( ( 1 - T + T^{2} )^{4} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
97$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.38732404658860027379510995027, −6.03915839678772079992509607185, −5.95249458955596928243037636377, −5.90163661378742136935363834672, −5.52867993822262665495069683566, −5.35363779109168185685981709906, −5.13001649403389599936093179948, −5.07343058786051468287813564611, −4.61730381879192338418289953927, −4.10490824913838260422917459534, −4.08606935045248576255948312038, −3.72640027700614220744431703369, −3.56977397857804554955629811244, −3.45935008746000476963276038698, −3.30505441354777963907830174650, −2.95093374238459842463127869838, −2.75829198716648536403476311878, −2.63836418199614725463343411497, −2.46498373550549570187149213201, −2.14375140428819996843764377047, −1.96862948860913271434557356564, −1.83657204359243327401382376216, −1.47581233420672987487139748645, −1.44758545457071734627694642464, −0.815561257211499001148503754492, 0.815561257211499001148503754492, 1.44758545457071734627694642464, 1.47581233420672987487139748645, 1.83657204359243327401382376216, 1.96862948860913271434557356564, 2.14375140428819996843764377047, 2.46498373550549570187149213201, 2.63836418199614725463343411497, 2.75829198716648536403476311878, 2.95093374238459842463127869838, 3.30505441354777963907830174650, 3.45935008746000476963276038698, 3.56977397857804554955629811244, 3.72640027700614220744431703369, 4.08606935045248576255948312038, 4.10490824913838260422917459534, 4.61730381879192338418289953927, 5.07343058786051468287813564611, 5.13001649403389599936093179948, 5.35363779109168185685981709906, 5.52867993822262665495069683566, 5.90163661378742136935363834672, 5.95249458955596928243037636377, 6.03915839678772079992509607185, 6.38732404658860027379510995027

Graph of the $Z$-function along the critical line