L(s) = 1 | + 2·3-s + 4·4-s + 9-s + 8·12-s + 10·16-s − 2·25-s − 2·27-s + 4·36-s − 2·43-s + 20·48-s + 49-s − 2·61-s + 20·64-s − 4·75-s + 4·79-s − 4·81-s − 8·100-s − 2·103-s − 8·108-s − 2·121-s + 127-s − 4·129-s + 131-s + 137-s + 139-s + 10·144-s + 2·147-s + ⋯ |
L(s) = 1 | + 2·3-s + 4·4-s + 9-s + 8·12-s + 10·16-s − 2·25-s − 2·27-s + 4·36-s − 2·43-s + 20·48-s + 49-s − 2·61-s + 20·64-s − 4·75-s + 4·79-s − 4·81-s − 8·100-s − 2·103-s − 8·108-s − 2·121-s + 127-s − 4·129-s + 131-s + 137-s + 139-s + 10·144-s + 2·147-s + ⋯ |
Λ(s)=(=((34⋅74⋅138)s/2ΓC(s)4L(s)Λ(1−s)
Λ(s)=(=((34⋅74⋅138)s/2ΓC(s)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅74⋅138
|
Sign: |
1
|
Analytic conductor: |
9.84130 |
Root analytic conductor: |
1.33085 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅74⋅138, ( :0,0,0,0), 1)
|
Particular Values
L(21) |
≈ |
11.48426278 |
L(21) |
≈ |
11.48426278 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | (1−T+T2)2 |
| 7 | C22 | 1−T2+T4 |
| 13 | | 1 |
good | 2 | C1×C1 | (1−T)4(1+T)4 |
| 5 | C2 | (1−T+T2)2(1+T+T2)2 |
| 11 | C2 | (1−T+T2)2(1+T+T2)2 |
| 17 | C1×C1 | (1−T)4(1+T)4 |
| 19 | C2×C22 | (1+T2)2(1−T2+T4) |
| 23 | C1×C1 | (1−T)4(1+T)4 |
| 29 | C2 | (1−T+T2)2(1+T+T2)2 |
| 31 | C22 | (1−T2+T4)2 |
| 37 | C22 | (1−T2+T4)2 |
| 41 | C2 | (1−T+T2)2(1+T+T2)2 |
| 43 | C1×C2 | (1+T)4(1−T+T2)2 |
| 47 | C2 | (1−T+T2)2(1+T+T2)2 |
| 53 | C2 | (1−T+T2)2(1+T+T2)2 |
| 59 | C1×C1 | (1−T)4(1+T)4 |
| 61 | C1×C2 | (1+T)4(1−T+T2)2 |
| 67 | C22 | (1−T2+T4)2 |
| 71 | C2 | (1−T+T2)2(1+T+T2)2 |
| 73 | C2×C22 | (1+T2)2(1−T2+T4) |
| 79 | C2 | (1−T+T2)4 |
| 83 | C1×C1 | (1−T)4(1+T)4 |
| 89 | C1×C1 | (1−T)4(1+T)4 |
| 97 | C2×C22 | (1+T2)2(1−T2+T4) |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.38732404658860027379510995027, −6.03915839678772079992509607185, −5.95249458955596928243037636377, −5.90163661378742136935363834672, −5.52867993822262665495069683566, −5.35363779109168185685981709906, −5.13001649403389599936093179948, −5.07343058786051468287813564611, −4.61730381879192338418289953927, −4.10490824913838260422917459534, −4.08606935045248576255948312038, −3.72640027700614220744431703369, −3.56977397857804554955629811244, −3.45935008746000476963276038698, −3.30505441354777963907830174650, −2.95093374238459842463127869838, −2.75829198716648536403476311878, −2.63836418199614725463343411497, −2.46498373550549570187149213201, −2.14375140428819996843764377047, −1.96862948860913271434557356564, −1.83657204359243327401382376216, −1.47581233420672987487139748645, −1.44758545457071734627694642464, −0.815561257211499001148503754492,
0.815561257211499001148503754492, 1.44758545457071734627694642464, 1.47581233420672987487139748645, 1.83657204359243327401382376216, 1.96862948860913271434557356564, 2.14375140428819996843764377047, 2.46498373550549570187149213201, 2.63836418199614725463343411497, 2.75829198716648536403476311878, 2.95093374238459842463127869838, 3.30505441354777963907830174650, 3.45935008746000476963276038698, 3.56977397857804554955629811244, 3.72640027700614220744431703369, 4.08606935045248576255948312038, 4.10490824913838260422917459534, 4.61730381879192338418289953927, 5.07343058786051468287813564611, 5.13001649403389599936093179948, 5.35363779109168185685981709906, 5.52867993822262665495069683566, 5.90163661378742136935363834672, 5.95249458955596928243037636377, 6.03915839678772079992509607185, 6.38732404658860027379510995027