L(s) = 1 | + (0.707 + 0.707i)7-s + (−0.707 + 0.707i)9-s + (0.292 − 0.707i)11-s + (−1 + i)23-s + (0.707 + 0.707i)25-s + (0.292 + 0.707i)29-s + (1.70 + 0.707i)37-s + (0.707 − 1.70i)43-s + 1.00i·49-s + (−0.707 + 1.70i)53-s − 1.00·63-s + (−0.707 − 1.70i)67-s + (0.707 − 0.292i)77-s + 1.41i·79-s − 1.00i·81-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)7-s + (−0.707 + 0.707i)9-s + (0.292 − 0.707i)11-s + (−1 + i)23-s + (0.707 + 0.707i)25-s + (0.292 + 0.707i)29-s + (1.70 + 0.707i)37-s + (0.707 − 1.70i)43-s + 1.00i·49-s + (−0.707 + 1.70i)53-s − 1.00·63-s + (−0.707 − 1.70i)67-s + (0.707 − 0.292i)77-s + 1.41i·79-s − 1.00i·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.555 - 0.831i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.555 - 0.831i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.275218929\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.275218929\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-0.707 - 0.707i)T \) |
good | 3 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 5 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.292 + 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
| 13 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 23 | \( 1 + (1 - i)T - iT^{2} \) |
| 29 | \( 1 + (-0.292 - 0.707i)T + (-0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (-1.70 - 0.707i)T + (0.707 + 0.707i)T^{2} \) |
| 41 | \( 1 + iT^{2} \) |
| 43 | \( 1 + (-0.707 + 1.70i)T + (-0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (0.707 - 1.70i)T + (-0.707 - 0.707i)T^{2} \) |
| 59 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 61 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 67 | \( 1 + (0.707 + 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 71 | \( 1 + iT^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 - 1.41iT - T^{2} \) |
| 83 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 - iT^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.935072212308500282125009767967, −8.003055556160490830667970849485, −7.68912260019325639425251617179, −6.49644311024527566743766557059, −5.71237380976683009218298044170, −5.24749622346762657890946317926, −4.32309214743614810578938141672, −3.24167093855471127612065672866, −2.43467870799578720931788950688, −1.38353307970384567398214102261,
0.800750680784287917208046400652, 2.09369384177325243478475484454, 3.04445845460318611117030602416, 4.31243237005727480693327736918, 4.45194238776571933584332476643, 5.74346815093206601266829786547, 6.39539091510184593201753401676, 7.11936918972780292562604534109, 8.039133087192735715250182288606, 8.415833442581956001093067034724