L(s) = 1 | + (0.707 + 0.707i)7-s + (−0.707 + 0.707i)9-s + (0.292 − 0.707i)11-s + (−1 + i)23-s + (0.707 + 0.707i)25-s + (0.292 + 0.707i)29-s + (1.70 + 0.707i)37-s + (0.707 − 1.70i)43-s + 1.00i·49-s + (−0.707 + 1.70i)53-s − 1.00·63-s + (−0.707 − 1.70i)67-s + (0.707 − 0.292i)77-s + 1.41i·79-s − 1.00i·81-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)7-s + (−0.707 + 0.707i)9-s + (0.292 − 0.707i)11-s + (−1 + i)23-s + (0.707 + 0.707i)25-s + (0.292 + 0.707i)29-s + (1.70 + 0.707i)37-s + (0.707 − 1.70i)43-s + 1.00i·49-s + (−0.707 + 1.70i)53-s − 1.00·63-s + (−0.707 − 1.70i)67-s + (0.707 − 0.292i)77-s + 1.41i·79-s − 1.00i·81-s + ⋯ |
Λ(s)=(=(3584s/2ΓC(s)L(s)(0.555−0.831i)Λ(1−s)
Λ(s)=(=(3584s/2ΓC(s)L(s)(0.555−0.831i)Λ(1−s)
Degree: |
2 |
Conductor: |
3584
= 29⋅7
|
Sign: |
0.555−0.831i
|
Analytic conductor: |
1.78864 |
Root analytic conductor: |
1.33740 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3584(3009,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3584, ( :0), 0.555−0.831i)
|
Particular Values
L(21) |
≈ |
1.275218929 |
L(21) |
≈ |
1.275218929 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−0.707−0.707i)T |
good | 3 | 1+(0.707−0.707i)T2 |
| 5 | 1+(−0.707−0.707i)T2 |
| 11 | 1+(−0.292+0.707i)T+(−0.707−0.707i)T2 |
| 13 | 1+(−0.707+0.707i)T2 |
| 17 | 1+T2 |
| 19 | 1+(−0.707+0.707i)T2 |
| 23 | 1+(1−i)T−iT2 |
| 29 | 1+(−0.292−0.707i)T+(−0.707+0.707i)T2 |
| 31 | 1−T2 |
| 37 | 1+(−1.70−0.707i)T+(0.707+0.707i)T2 |
| 41 | 1+iT2 |
| 43 | 1+(−0.707+1.70i)T+(−0.707−0.707i)T2 |
| 47 | 1+T2 |
| 53 | 1+(0.707−1.70i)T+(−0.707−0.707i)T2 |
| 59 | 1+(−0.707−0.707i)T2 |
| 61 | 1+(0.707−0.707i)T2 |
| 67 | 1+(0.707+1.70i)T+(−0.707+0.707i)T2 |
| 71 | 1+iT2 |
| 73 | 1+iT2 |
| 79 | 1−1.41iT−T2 |
| 83 | 1+(−0.707+0.707i)T2 |
| 89 | 1−iT2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.935072212308500282125009767967, −8.003055556160490830667970849485, −7.68912260019325639425251617179, −6.49644311024527566743766557059, −5.71237380976683009218298044170, −5.24749622346762657890946317926, −4.32309214743614810578938141672, −3.24167093855471127612065672866, −2.43467870799578720931788950688, −1.38353307970384567398214102261,
0.800750680784287917208046400652, 2.09369384177325243478475484454, 3.04445845460318611117030602416, 4.31243237005727480693327736918, 4.45194238776571933584332476643, 5.74346815093206601266829786547, 6.39539091510184593201753401676, 7.11936918972780292562604534109, 8.039133087192735715250182288606, 8.415833442581956001093067034724