L(s) = 1 | + (5.11 − 2.42i)2-s + (20.2 − 24.7i)4-s − 49.0i·5-s − 12.2i·7-s + (43.6 − 175. i)8-s + (−118. − 250. i)10-s + 706.·11-s − 795.·13-s + (−29.7 − 62.7i)14-s + (−201. − 1.00e3i)16-s + 363. i·17-s + 2.77e3i·19-s + (−1.21e3 − 994. i)20-s + (3.61e3 − 1.71e3i)22-s + 1.04e3·23-s + ⋯ |
L(s) = 1 | + (0.903 − 0.428i)2-s + (0.633 − 0.773i)4-s − 0.877i·5-s − 0.0946i·7-s + (0.241 − 0.970i)8-s + (−0.375 − 0.793i)10-s + 1.76·11-s − 1.30·13-s + (−0.0405 − 0.0855i)14-s + (−0.197 − 0.980i)16-s + 0.305i·17-s + 1.76i·19-s + (−0.679 − 0.556i)20-s + (1.59 − 0.753i)22-s + 0.413·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 36 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.265 + 0.963i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.265 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(2.07977 - 1.58367i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.07977 - 1.58367i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-5.11 + 2.42i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + 49.0iT - 3.12e3T^{2} \) |
| 7 | \( 1 + 12.2iT - 1.68e4T^{2} \) |
| 11 | \( 1 - 706.T + 1.61e5T^{2} \) |
| 13 | \( 1 + 795.T + 3.71e5T^{2} \) |
| 17 | \( 1 - 363. iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 2.77e3iT - 2.47e6T^{2} \) |
| 23 | \( 1 - 1.04e3T + 6.43e6T^{2} \) |
| 29 | \( 1 - 4.96e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 - 5.93e3iT - 2.86e7T^{2} \) |
| 37 | \( 1 + 5.62e3T + 6.93e7T^{2} \) |
| 41 | \( 1 + 8.66e3iT - 1.15e8T^{2} \) |
| 43 | \( 1 + 1.75e4iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 97.2T + 2.29e8T^{2} \) |
| 53 | \( 1 + 2.18e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 + 1.92e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 931.T + 8.44e8T^{2} \) |
| 67 | \( 1 - 3.04e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 4.23e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 146.T + 2.07e9T^{2} \) |
| 79 | \( 1 - 3.78e4iT - 3.07e9T^{2} \) |
| 83 | \( 1 - 6.25e4T + 3.93e9T^{2} \) |
| 89 | \( 1 - 3.59e4iT - 5.58e9T^{2} \) |
| 97 | \( 1 + 9.63e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.79084006275276118946888538804, −14.08461397540359106753861051766, −12.44763446893095081552462152890, −12.06891017309997381459341686750, −10.34460212550183929939814735851, −8.996306872666390480214538307305, −6.91159143048555505807249720750, −5.26828031076636835562792476185, −3.84072515797938757604058581394, −1.45716898570738438873144110731,
2.75597738701463492121005058277, 4.52321719955077363863882067909, 6.40980000845920004974007921441, 7.33544605460466892580202854946, 9.307335112480267200268946383099, 11.17988462891689355061128242873, 12.05828379563457518890005805000, 13.54863167486406692595366119734, 14.63347856049648886969128653611, 15.22612568486024090307147342725