L(s) = 1 | − 5-s + 2·7-s + 2·11-s + 4·13-s − 2·17-s + 4·19-s + 8·23-s + 25-s − 10·29-s + 4·31-s − 2·35-s − 8·43-s + 8·47-s − 3·49-s + 6·53-s − 2·55-s − 14·59-s − 14·61-s − 4·65-s − 4·67-s + 12·71-s + 6·73-s + 4·77-s − 12·79-s + 4·83-s + 2·85-s − 12·89-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 0.755·7-s + 0.603·11-s + 1.10·13-s − 0.485·17-s + 0.917·19-s + 1.66·23-s + 1/5·25-s − 1.85·29-s + 0.718·31-s − 0.338·35-s − 1.21·43-s + 1.16·47-s − 3/7·49-s + 0.824·53-s − 0.269·55-s − 1.82·59-s − 1.79·61-s − 0.496·65-s − 0.488·67-s + 1.42·71-s + 0.702·73-s + 0.455·77-s − 1.35·79-s + 0.439·83-s + 0.216·85-s − 1.27·89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.434164813\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.434164813\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + T \) |
good | 7 | \( 1 - 2 T + p T^{2} \) |
| 11 | \( 1 - 2 T + p T^{2} \) |
| 13 | \( 1 - 4 T + p T^{2} \) |
| 17 | \( 1 + 2 T + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 23 | \( 1 - 8 T + p T^{2} \) |
| 29 | \( 1 + 10 T + p T^{2} \) |
| 31 | \( 1 - 4 T + p T^{2} \) |
| 37 | \( 1 + p T^{2} \) |
| 41 | \( 1 + p T^{2} \) |
| 43 | \( 1 + 8 T + p T^{2} \) |
| 47 | \( 1 - 8 T + p T^{2} \) |
| 53 | \( 1 - 6 T + p T^{2} \) |
| 59 | \( 1 + 14 T + p T^{2} \) |
| 61 | \( 1 + 14 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 - 12 T + p T^{2} \) |
| 73 | \( 1 - 6 T + p T^{2} \) |
| 79 | \( 1 + 12 T + p T^{2} \) |
| 83 | \( 1 - 4 T + p T^{2} \) |
| 89 | \( 1 + 12 T + p T^{2} \) |
| 97 | \( 1 + 14 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.26349653188249759848278253596, −10.90086054227291919960198011502, −9.419368133385122785233890515409, −8.687154242699380983384182548901, −7.70282942257969207736023389997, −6.75835720857323144112923149074, −5.52198466275353226488973122049, −4.40097747366580162117975084188, −3.26490524893388333289715416456, −1.39528505582892974646328461150,
1.39528505582892974646328461150, 3.26490524893388333289715416456, 4.40097747366580162117975084188, 5.52198466275353226488973122049, 6.75835720857323144112923149074, 7.70282942257969207736023389997, 8.687154242699380983384182548901, 9.419368133385122785233890515409, 10.90086054227291919960198011502, 11.26349653188249759848278253596