Properties

Label 2-360-1.1-c3-0-6
Degree $2$
Conductor $360$
Sign $1$
Analytic cond. $21.2406$
Root an. cond. $4.60876$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·5-s + 20·7-s − 16·11-s + 58·13-s − 38·17-s + 4·19-s + 80·23-s + 25·25-s − 82·29-s − 8·31-s + 100·35-s + 426·37-s + 246·41-s − 524·43-s + 464·47-s + 57·49-s + 702·53-s − 80·55-s + 592·59-s + 574·61-s + 290·65-s − 172·67-s − 768·71-s − 558·73-s − 320·77-s + 408·79-s − 164·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.07·7-s − 0.438·11-s + 1.23·13-s − 0.542·17-s + 0.0482·19-s + 0.725·23-s + 1/5·25-s − 0.525·29-s − 0.0463·31-s + 0.482·35-s + 1.89·37-s + 0.937·41-s − 1.85·43-s + 1.44·47-s + 0.166·49-s + 1.81·53-s − 0.196·55-s + 1.30·59-s + 1.20·61-s + 0.553·65-s − 0.313·67-s − 1.28·71-s − 0.894·73-s − 0.473·77-s + 0.581·79-s − 0.216·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(360\)    =    \(2^{3} \cdot 3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(21.2406\)
Root analytic conductor: \(4.60876\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 360,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.393772897\)
\(L(\frac12)\) \(\approx\) \(2.393772897\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - p T \)
good7 \( 1 - 20 T + p^{3} T^{2} \)
11 \( 1 + 16 T + p^{3} T^{2} \)
13 \( 1 - 58 T + p^{3} T^{2} \)
17 \( 1 + 38 T + p^{3} T^{2} \)
19 \( 1 - 4 T + p^{3} T^{2} \)
23 \( 1 - 80 T + p^{3} T^{2} \)
29 \( 1 + 82 T + p^{3} T^{2} \)
31 \( 1 + 8 T + p^{3} T^{2} \)
37 \( 1 - 426 T + p^{3} T^{2} \)
41 \( 1 - 6 p T + p^{3} T^{2} \)
43 \( 1 + 524 T + p^{3} T^{2} \)
47 \( 1 - 464 T + p^{3} T^{2} \)
53 \( 1 - 702 T + p^{3} T^{2} \)
59 \( 1 - 592 T + p^{3} T^{2} \)
61 \( 1 - 574 T + p^{3} T^{2} \)
67 \( 1 + 172 T + p^{3} T^{2} \)
71 \( 1 + 768 T + p^{3} T^{2} \)
73 \( 1 + 558 T + p^{3} T^{2} \)
79 \( 1 - 408 T + p^{3} T^{2} \)
83 \( 1 + 164 T + p^{3} T^{2} \)
89 \( 1 - 510 T + p^{3} T^{2} \)
97 \( 1 - 514 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.08639269691535931871650424562, −10.22757289117123376173863843251, −9.020155785402700106552813916232, −8.317538363022964981600854385717, −7.28080977256345250374505617433, −6.07595096726552326967379925018, −5.14773570277861915469857679848, −4.01078851087135331060282197433, −2.43837740220450195187372195228, −1.13166410536671084863059251183, 1.13166410536671084863059251183, 2.43837740220450195187372195228, 4.01078851087135331060282197433, 5.14773570277861915469857679848, 6.07595096726552326967379925018, 7.28080977256345250374505617433, 8.317538363022964981600854385717, 9.020155785402700106552813916232, 10.22757289117123376173863843251, 11.08639269691535931871650424562

Graph of the $Z$-function along the critical line