L(s) = 1 | + (0.178 + 11.1i)5-s + 35.0i·7-s − 25.6·11-s + 37.6i·13-s − 95.7i·17-s − 50.8·19-s − 110. i·23-s + (−124. + 4i)25-s − 54.5·29-s + 198.·31-s + (−392. + 6.27i)35-s − 266. i·37-s − 103.·41-s + 108i·43-s + 597. i·47-s + ⋯ |
L(s) = 1 | + (0.0160 + 0.999i)5-s + 1.89i·7-s − 0.702·11-s + 0.803i·13-s − 1.36i·17-s − 0.614·19-s − 1.00i·23-s + (−0.999 + 0.0320i)25-s − 0.349·29-s + 1.14·31-s + (−1.89 + 0.0303i)35-s − 1.18i·37-s − 0.395·41-s + 0.383i·43-s + 1.85i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0160i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0160i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.9206442644\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9206442644\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.178 - 11.1i)T \) |
good | 7 | \( 1 - 35.0iT - 343T^{2} \) |
| 11 | \( 1 + 25.6T + 1.33e3T^{2} \) |
| 13 | \( 1 - 37.6iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 95.7iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 50.8T + 6.85e3T^{2} \) |
| 23 | \( 1 + 110. iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 54.5T + 2.43e4T^{2} \) |
| 31 | \( 1 - 198.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 266. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 103.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 108iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 597. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 305. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 223.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 485.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 876. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 585.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 1.13e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 685.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 305. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 887.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 556. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.55849871114377940744168934483, −10.64275028147129729567978165398, −9.536756266007061111307207361249, −8.815545948421127036090702956684, −7.72324763506225258568545653863, −6.57737052942814156783056185796, −5.79005574701098173494283899136, −4.63450071681656360364176290209, −2.85672941268375815133128365073, −2.29606688338084363464212646172,
0.31308427072404656831704842922, 1.51659396911693286692796202975, 3.54695242992790782613773384066, 4.44717054520076828041690044270, 5.51366433753322801050170142774, 6.80456721545714798075492248635, 7.915416067979764542472286988502, 8.404451159977627422864634050446, 9.972922254195106601572091403021, 10.33176899079572963513570766749