L(s) = 1 | + (−7.08 + 8.64i)5-s + (3.01 − 3.01i)7-s − 64.6i·11-s + (46.4 + 46.4i)13-s + (51.1 + 51.1i)17-s + 75.4i·19-s + (−131. + 131. i)23-s + (−24.6 − 122. i)25-s − 279.·29-s − 7.69·31-s + (4.72 + 47.5i)35-s + (−152. + 152. i)37-s + 295. i·41-s + (200. + 200. i)43-s + (−292. − 292. i)47-s + ⋯ |
L(s) = 1 | + (−0.633 + 0.773i)5-s + (0.163 − 0.163i)7-s − 1.77i·11-s + (0.992 + 0.992i)13-s + (0.730 + 0.730i)17-s + 0.911i·19-s + (−1.19 + 1.19i)23-s + (−0.196 − 0.980i)25-s − 1.78·29-s − 0.0445·31-s + (0.0228 + 0.229i)35-s + (−0.678 + 0.678i)37-s + 1.12i·41-s + (0.710 + 0.710i)43-s + (−0.907 − 0.907i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.480 - 0.877i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.480 - 0.877i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.074087705\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.074087705\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (7.08 - 8.64i)T \) |
good | 7 | \( 1 + (-3.01 + 3.01i)T - 343iT^{2} \) |
| 11 | \( 1 + 64.6iT - 1.33e3T^{2} \) |
| 13 | \( 1 + (-46.4 - 46.4i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 + (-51.1 - 51.1i)T + 4.91e3iT^{2} \) |
| 19 | \( 1 - 75.4iT - 6.85e3T^{2} \) |
| 23 | \( 1 + (131. - 131. i)T - 1.21e4iT^{2} \) |
| 29 | \( 1 + 279.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 7.69T + 2.97e4T^{2} \) |
| 37 | \( 1 + (152. - 152. i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 - 295. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + (-200. - 200. i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 + (292. + 292. i)T + 1.03e5iT^{2} \) |
| 53 | \( 1 + (212. - 212. i)T - 1.48e5iT^{2} \) |
| 59 | \( 1 + 55.6T + 2.05e5T^{2} \) |
| 61 | \( 1 - 19.2T + 2.26e5T^{2} \) |
| 67 | \( 1 + (-437. + 437. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 - 582. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (172. + 172. i)T + 3.89e5iT^{2} \) |
| 79 | \( 1 - 767. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (-369. + 369. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 - 394.T + 7.04e5T^{2} \) |
| 97 | \( 1 + (291. - 291. i)T - 9.12e5iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.30280207091846633208830039004, −10.65134215951136505343434211013, −9.498144221336004029887619425035, −8.280671328786790633535521250052, −7.77145432253395873453379381751, −6.37895371652999454627907021396, −5.75594916142004425471827716725, −3.87805787783619885301149181654, −3.41099356271653098110444985021, −1.49656815164524061320103505552,
0.38436512624979855600143019174, 1.98529662302810052589802718871, 3.66928289639470738223035424319, 4.72101251344881296527629648789, 5.62542505747591778848919516700, 7.12714974057478889152223865027, 7.85896077318672755315086188889, 8.837728898586267877477508341284, 9.721664733791871697666499226180, 10.73806671334384533963576421934