L(s) = 1 | + (5.12 + 9.93i)5-s + (−14.2 + 14.2i)7-s + 38.4i·11-s + (−11.0 − 11.0i)13-s + (−95.0 − 95.0i)17-s + 17.3i·19-s + (115. − 115. i)23-s + (−72.4 + 101. i)25-s − 193.·29-s − 107.·31-s + (−214. − 68.5i)35-s + (43.7 − 43.7i)37-s − 225. i·41-s + (306. + 306. i)43-s + (−220. − 220. i)47-s + ⋯ |
L(s) = 1 | + (0.458 + 0.888i)5-s + (−0.769 + 0.769i)7-s + 1.05i·11-s + (−0.235 − 0.235i)13-s + (−1.35 − 1.35i)17-s + 0.209i·19-s + (1.04 − 1.04i)23-s + (−0.579 + 0.814i)25-s − 1.24·29-s − 0.620·31-s + (−1.03 − 0.331i)35-s + (0.194 − 0.194i)37-s − 0.858i·41-s + (1.08 + 1.08i)43-s + (−0.684 − 0.684i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.995 + 0.0922i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.995 + 0.0922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.5569639297\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5569639297\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-5.12 - 9.93i)T \) |
good | 7 | \( 1 + (14.2 - 14.2i)T - 343iT^{2} \) |
| 11 | \( 1 - 38.4iT - 1.33e3T^{2} \) |
| 13 | \( 1 + (11.0 + 11.0i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 + (95.0 + 95.0i)T + 4.91e3iT^{2} \) |
| 19 | \( 1 - 17.3iT - 6.85e3T^{2} \) |
| 23 | \( 1 + (-115. + 115. i)T - 1.21e4iT^{2} \) |
| 29 | \( 1 + 193.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 107.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (-43.7 + 43.7i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 + 225. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + (-306. - 306. i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 + (220. + 220. i)T + 1.03e5iT^{2} \) |
| 53 | \( 1 + (257. - 257. i)T - 1.48e5iT^{2} \) |
| 59 | \( 1 + 124.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 862.T + 2.26e5T^{2} \) |
| 67 | \( 1 + (557. - 557. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 + 246. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (-77.9 - 77.9i)T + 3.89e5iT^{2} \) |
| 79 | \( 1 - 1.27e3iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (-502. + 502. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 + 958.T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-661. + 661. i)T - 9.12e5iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.36841332265430455745714786361, −10.58537362060527284267393742551, −9.471791855581143032636792142587, −9.119038831729163678609171646286, −7.42756048503964122563293665950, −6.78689054658424486304065253827, −5.79530561683643125412480878396, −4.59582528572000506295546261829, −2.98869531204609194643081015006, −2.19589966553866214712575791394,
0.18124043086336825833957873445, 1.64256060782455956033257805963, 3.38090280694812707292876923513, 4.45772242118516664716730517812, 5.72135574858483758530110842494, 6.56087766419437513873147760663, 7.75093702172628306399751906742, 8.919365802507726300846623482270, 9.408981404976625362307316664444, 10.62011599490361583813017472182