L(s) = 1 | + (5.12 + 9.93i)5-s + (−14.2 + 14.2i)7-s + 38.4i·11-s + (−11.0 − 11.0i)13-s + (−95.0 − 95.0i)17-s + 17.3i·19-s + (115. − 115. i)23-s + (−72.4 + 101. i)25-s − 193.·29-s − 107.·31-s + (−214. − 68.5i)35-s + (43.7 − 43.7i)37-s − 225. i·41-s + (306. + 306. i)43-s + (−220. − 220. i)47-s + ⋯ |
L(s) = 1 | + (0.458 + 0.888i)5-s + (−0.769 + 0.769i)7-s + 1.05i·11-s + (−0.235 − 0.235i)13-s + (−1.35 − 1.35i)17-s + 0.209i·19-s + (1.04 − 1.04i)23-s + (−0.579 + 0.814i)25-s − 1.24·29-s − 0.620·31-s + (−1.03 − 0.331i)35-s + (0.194 − 0.194i)37-s − 0.858i·41-s + (1.08 + 1.08i)43-s + (−0.684 − 0.684i)47-s + ⋯ |
Λ(s)=(=(360s/2ΓC(s)L(s)(−0.995+0.0922i)Λ(4−s)
Λ(s)=(=(360s/2ΓC(s+3/2)L(s)(−0.995+0.0922i)Λ(1−s)
Degree: |
2 |
Conductor: |
360
= 23⋅32⋅5
|
Sign: |
−0.995+0.0922i
|
Analytic conductor: |
21.2406 |
Root analytic conductor: |
4.60876 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ360(233,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 360, ( :3/2), −0.995+0.0922i)
|
Particular Values
L(2) |
≈ |
0.5569639297 |
L(21) |
≈ |
0.5569639297 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−5.12−9.93i)T |
good | 7 | 1+(14.2−14.2i)T−343iT2 |
| 11 | 1−38.4iT−1.33e3T2 |
| 13 | 1+(11.0+11.0i)T+2.19e3iT2 |
| 17 | 1+(95.0+95.0i)T+4.91e3iT2 |
| 19 | 1−17.3iT−6.85e3T2 |
| 23 | 1+(−115.+115.i)T−1.21e4iT2 |
| 29 | 1+193.T+2.43e4T2 |
| 31 | 1+107.T+2.97e4T2 |
| 37 | 1+(−43.7+43.7i)T−5.06e4iT2 |
| 41 | 1+225.iT−6.89e4T2 |
| 43 | 1+(−306.−306.i)T+7.95e4iT2 |
| 47 | 1+(220.+220.i)T+1.03e5iT2 |
| 53 | 1+(257.−257.i)T−1.48e5iT2 |
| 59 | 1+124.T+2.05e5T2 |
| 61 | 1+862.T+2.26e5T2 |
| 67 | 1+(557.−557.i)T−3.00e5iT2 |
| 71 | 1+246.iT−3.57e5T2 |
| 73 | 1+(−77.9−77.9i)T+3.89e5iT2 |
| 79 | 1−1.27e3iT−4.93e5T2 |
| 83 | 1+(−502.+502.i)T−5.71e5iT2 |
| 89 | 1+958.T+7.04e5T2 |
| 97 | 1+(−661.+661.i)T−9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.36841332265430455745714786361, −10.58537362060527284267393742551, −9.471791855581143032636792142587, −9.119038831729163678609171646286, −7.42756048503964122563293665950, −6.78689054658424486304065253827, −5.79530561683643125412480878396, −4.59582528572000506295546261829, −2.98869531204609194643081015006, −2.19589966553866214712575791394,
0.18124043086336825833957873445, 1.64256060782455956033257805963, 3.38090280694812707292876923513, 4.45772242118516664716730517812, 5.72135574858483758530110842494, 6.56087766419437513873147760663, 7.75093702172628306399751906742, 8.919365802507726300846623482270, 9.408981404976625362307316664444, 10.62011599490361583813017472182