L(s) = 1 | + (−33.8 − 44.4i)5-s + 85.8i·7-s + 488.·11-s − 38.5i·13-s + 692. i·17-s − 2.48e3·19-s − 4.12e3i·23-s + (−830. + 3.01e3i)25-s − 1.88e3·29-s − 2.29e3·31-s + (3.81e3 − 2.90e3i)35-s + 1.06e4i·37-s + 1.52e4·41-s + 9.46e3i·43-s + 1.43e4i·47-s + ⋯ |
L(s) = 1 | + (−0.605 − 0.795i)5-s + 0.662i·7-s + 1.21·11-s − 0.0633i·13-s + 0.581i·17-s − 1.58·19-s − 1.62i·23-s + (−0.265 + 0.964i)25-s − 0.416·29-s − 0.429·31-s + (0.526 − 0.401i)35-s + 1.27i·37-s + 1.41·41-s + 0.780i·43-s + 0.945i·47-s + ⋯ |
Λ(s)=(=(360s/2ΓC(s)L(s)(0.795−0.605i)Λ(6−s)
Λ(s)=(=(360s/2ΓC(s+5/2)L(s)(0.795−0.605i)Λ(1−s)
Degree: |
2 |
Conductor: |
360
= 23⋅32⋅5
|
Sign: |
0.795−0.605i
|
Analytic conductor: |
57.7381 |
Root analytic conductor: |
7.59856 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ360(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 360, ( :5/2), 0.795−0.605i)
|
Particular Values
L(3) |
≈ |
1.582307470 |
L(21) |
≈ |
1.582307470 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(33.8+44.4i)T |
good | 7 | 1−85.8iT−1.68e4T2 |
| 11 | 1−488.T+1.61e5T2 |
| 13 | 1+38.5iT−3.71e5T2 |
| 17 | 1−692.iT−1.41e6T2 |
| 19 | 1+2.48e3T+2.47e6T2 |
| 23 | 1+4.12e3iT−6.43e6T2 |
| 29 | 1+1.88e3T+2.05e7T2 |
| 31 | 1+2.29e3T+2.86e7T2 |
| 37 | 1−1.06e4iT−6.93e7T2 |
| 41 | 1−1.52e4T+1.15e8T2 |
| 43 | 1−9.46e3iT−1.47e8T2 |
| 47 | 1−1.43e4iT−2.29e8T2 |
| 53 | 1+1.39e4iT−4.18e8T2 |
| 59 | 1−3.96e4T+7.14e8T2 |
| 61 | 1−3.82e4T+8.44e8T2 |
| 67 | 1+1.41e3iT−1.35e9T2 |
| 71 | 1−1.16e4T+1.80e9T2 |
| 73 | 1−3.10e4iT−2.07e9T2 |
| 79 | 1−4.34e4T+3.07e9T2 |
| 83 | 1−8.66e4iT−3.93e9T2 |
| 89 | 1+1.00e5T+5.58e9T2 |
| 97 | 1+3.99e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.86800755948972199153788655248, −9.615402367229056251377435755519, −8.675928687836215873975190721244, −8.258302016096967383287421567486, −6.80238629942353560790000864776, −5.92997678749114484296412637477, −4.60855020606864027673625494701, −3.86166044105265330315524953504, −2.24363325202322463019501312745, −0.898356521068813594849341273214,
0.52234317014571648782525174908, 2.08392289356223263064983951974, 3.62753032042547365756787678069, 4.18209174092434816452245508904, 5.80388977313753354510710518870, 6.93305739044423728075365321679, 7.42986202262722750502223504425, 8.684797896448448906781313543168, 9.632864933024185725898264264655, 10.70212640420696129953356005635