Properties

Label 2-360-5.4-c5-0-12
Degree $2$
Conductor $360$
Sign $0.795 - 0.605i$
Analytic cond. $57.7381$
Root an. cond. $7.59856$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−33.8 − 44.4i)5-s + 85.8i·7-s + 488.·11-s − 38.5i·13-s + 692. i·17-s − 2.48e3·19-s − 4.12e3i·23-s + (−830. + 3.01e3i)25-s − 1.88e3·29-s − 2.29e3·31-s + (3.81e3 − 2.90e3i)35-s + 1.06e4i·37-s + 1.52e4·41-s + 9.46e3i·43-s + 1.43e4i·47-s + ⋯
L(s)  = 1  + (−0.605 − 0.795i)5-s + 0.662i·7-s + 1.21·11-s − 0.0633i·13-s + 0.581i·17-s − 1.58·19-s − 1.62i·23-s + (−0.265 + 0.964i)25-s − 0.416·29-s − 0.429·31-s + (0.526 − 0.401i)35-s + 1.27i·37-s + 1.41·41-s + 0.780i·43-s + 0.945i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.795 - 0.605i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.795 - 0.605i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(360\)    =    \(2^{3} \cdot 3^{2} \cdot 5\)
Sign: $0.795 - 0.605i$
Analytic conductor: \(57.7381\)
Root analytic conductor: \(7.59856\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{360} (289, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 360,\ (\ :5/2),\ 0.795 - 0.605i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.582307470\)
\(L(\frac12)\) \(\approx\) \(1.582307470\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (33.8 + 44.4i)T \)
good7 \( 1 - 85.8iT - 1.68e4T^{2} \)
11 \( 1 - 488.T + 1.61e5T^{2} \)
13 \( 1 + 38.5iT - 3.71e5T^{2} \)
17 \( 1 - 692. iT - 1.41e6T^{2} \)
19 \( 1 + 2.48e3T + 2.47e6T^{2} \)
23 \( 1 + 4.12e3iT - 6.43e6T^{2} \)
29 \( 1 + 1.88e3T + 2.05e7T^{2} \)
31 \( 1 + 2.29e3T + 2.86e7T^{2} \)
37 \( 1 - 1.06e4iT - 6.93e7T^{2} \)
41 \( 1 - 1.52e4T + 1.15e8T^{2} \)
43 \( 1 - 9.46e3iT - 1.47e8T^{2} \)
47 \( 1 - 1.43e4iT - 2.29e8T^{2} \)
53 \( 1 + 1.39e4iT - 4.18e8T^{2} \)
59 \( 1 - 3.96e4T + 7.14e8T^{2} \)
61 \( 1 - 3.82e4T + 8.44e8T^{2} \)
67 \( 1 + 1.41e3iT - 1.35e9T^{2} \)
71 \( 1 - 1.16e4T + 1.80e9T^{2} \)
73 \( 1 - 3.10e4iT - 2.07e9T^{2} \)
79 \( 1 - 4.34e4T + 3.07e9T^{2} \)
83 \( 1 - 8.66e4iT - 3.93e9T^{2} \)
89 \( 1 + 1.00e5T + 5.58e9T^{2} \)
97 \( 1 + 3.99e4iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.86800755948972199153788655248, −9.615402367229056251377435755519, −8.675928687836215873975190721244, −8.258302016096967383287421567486, −6.80238629942353560790000864776, −5.92997678749114484296412637477, −4.60855020606864027673625494701, −3.86166044105265330315524953504, −2.24363325202322463019501312745, −0.898356521068813594849341273214, 0.52234317014571648782525174908, 2.08392289356223263064983951974, 3.62753032042547365756787678069, 4.18209174092434816452245508904, 5.80388977313753354510710518870, 6.93305739044423728075365321679, 7.42986202262722750502223504425, 8.684797896448448906781313543168, 9.632864933024185725898264264655, 10.70212640420696129953356005635

Graph of the $Z$-function along the critical line