L(s) = 1 | + (0.156 + 0.987i)5-s + (0.896 + 1.76i)13-s + (−0.610 + 0.0966i)17-s + (−0.951 + 0.309i)25-s + (−0.734 + 0.533i)29-s + (0.809 − 0.412i)37-s + (−1.87 − 0.610i)41-s + i·49-s + (1.59 + 0.253i)53-s + (−0.363 − 1.11i)61-s + (−1.59 + 1.16i)65-s + (0.278 + 0.142i)73-s + (−0.190 − 0.587i)85-s + (0.550 + 1.69i)89-s + (1.76 + 0.278i)97-s + ⋯ |
L(s) = 1 | + (0.156 + 0.987i)5-s + (0.896 + 1.76i)13-s + (−0.610 + 0.0966i)17-s + (−0.951 + 0.309i)25-s + (−0.734 + 0.533i)29-s + (0.809 − 0.412i)37-s + (−1.87 − 0.610i)41-s + i·49-s + (1.59 + 0.253i)53-s + (−0.363 − 1.11i)61-s + (−1.59 + 1.16i)65-s + (0.278 + 0.142i)73-s + (−0.190 − 0.587i)85-s + (0.550 + 1.69i)89-s + (1.76 + 0.278i)97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0755 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0755 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.196724170\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.196724170\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.156 - 0.987i)T \) |
good | 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.896 - 1.76i)T + (-0.587 + 0.809i)T^{2} \) |
| 17 | \( 1 + (0.610 - 0.0966i)T + (0.951 - 0.309i)T^{2} \) |
| 19 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 29 | \( 1 + (0.734 - 0.533i)T + (0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.809 + 0.412i)T + (0.587 - 0.809i)T^{2} \) |
| 41 | \( 1 + (1.87 + 0.610i)T + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (0.951 + 0.309i)T^{2} \) |
| 53 | \( 1 + (-1.59 - 0.253i)T + (0.951 + 0.309i)T^{2} \) |
| 59 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (0.363 + 1.11i)T + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 71 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.278 - 0.142i)T + (0.587 + 0.809i)T^{2} \) |
| 79 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 89 | \( 1 + (-0.550 - 1.69i)T + (-0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (-1.76 - 0.278i)T + (0.951 + 0.309i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.079958101656393563536377603060, −8.192251330977358747064160232755, −7.26744890328745977725775672200, −6.66529779717285786799880094166, −6.19224062830832542149036722516, −5.19732219769330681461946721530, −4.11580368540707788380055640994, −3.58551380680103488750504367361, −2.41947158930724095630113378281, −1.64145523951003654045980133972,
0.69900473873621712118897565285, 1.84821757138007885464556408404, 3.03754286727657892250559330378, 3.91106776175062514125337173662, 4.81310247356433936247705298518, 5.55976092386691760361522151260, 6.08978635254481733153249457871, 7.12179458604650262776765993068, 8.062231833181424253803742489624, 8.437158815216965625003277849061