L(s) = 1 | + (0.156 + 0.987i)5-s + (0.896 + 1.76i)13-s + (−0.610 + 0.0966i)17-s + (−0.951 + 0.309i)25-s + (−0.734 + 0.533i)29-s + (0.809 − 0.412i)37-s + (−1.87 − 0.610i)41-s + i·49-s + (1.59 + 0.253i)53-s + (−0.363 − 1.11i)61-s + (−1.59 + 1.16i)65-s + (0.278 + 0.142i)73-s + (−0.190 − 0.587i)85-s + (0.550 + 1.69i)89-s + (1.76 + 0.278i)97-s + ⋯ |
L(s) = 1 | + (0.156 + 0.987i)5-s + (0.896 + 1.76i)13-s + (−0.610 + 0.0966i)17-s + (−0.951 + 0.309i)25-s + (−0.734 + 0.533i)29-s + (0.809 − 0.412i)37-s + (−1.87 − 0.610i)41-s + i·49-s + (1.59 + 0.253i)53-s + (−0.363 − 1.11i)61-s + (−1.59 + 1.16i)65-s + (0.278 + 0.142i)73-s + (−0.190 − 0.587i)85-s + (0.550 + 1.69i)89-s + (1.76 + 0.278i)97-s + ⋯ |
Λ(s)=(=(3600s/2ΓC(s)L(s)(−0.0755−0.997i)Λ(1−s)
Λ(s)=(=(3600s/2ΓC(s)L(s)(−0.0755−0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
3600
= 24⋅32⋅52
|
Sign: |
−0.0755−0.997i
|
Analytic conductor: |
1.79663 |
Root analytic conductor: |
1.34038 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3600(3167,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3600, ( :0), −0.0755−0.997i)
|
Particular Values
L(21) |
≈ |
1.196724170 |
L(21) |
≈ |
1.196724170 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−0.156−0.987i)T |
good | 7 | 1−iT2 |
| 11 | 1+(−0.809+0.587i)T2 |
| 13 | 1+(−0.896−1.76i)T+(−0.587+0.809i)T2 |
| 17 | 1+(0.610−0.0966i)T+(0.951−0.309i)T2 |
| 19 | 1+(0.309+0.951i)T2 |
| 23 | 1+(0.587+0.809i)T2 |
| 29 | 1+(0.734−0.533i)T+(0.309−0.951i)T2 |
| 31 | 1+(−0.309−0.951i)T2 |
| 37 | 1+(−0.809+0.412i)T+(0.587−0.809i)T2 |
| 41 | 1+(1.87+0.610i)T+(0.809+0.587i)T2 |
| 43 | 1+iT2 |
| 47 | 1+(0.951+0.309i)T2 |
| 53 | 1+(−1.59−0.253i)T+(0.951+0.309i)T2 |
| 59 | 1+(0.809+0.587i)T2 |
| 61 | 1+(0.363+1.11i)T+(−0.809+0.587i)T2 |
| 67 | 1+(0.951−0.309i)T2 |
| 71 | 1+(0.309−0.951i)T2 |
| 73 | 1+(−0.278−0.142i)T+(0.587+0.809i)T2 |
| 79 | 1+(0.309−0.951i)T2 |
| 83 | 1+(0.951−0.309i)T2 |
| 89 | 1+(−0.550−1.69i)T+(−0.809+0.587i)T2 |
| 97 | 1+(−1.76−0.278i)T+(0.951+0.309i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.079958101656393563536377603060, −8.192251330977358747064160232755, −7.26744890328745977725775672200, −6.66529779717285786799880094166, −6.19224062830832542149036722516, −5.19732219769330681461946721530, −4.11580368540707788380055640994, −3.58551380680103488750504367361, −2.41947158930724095630113378281, −1.64145523951003654045980133972,
0.69900473873621712118897565285, 1.84821757138007885464556408404, 3.03754286727657892250559330378, 3.91106776175062514125337173662, 4.81310247356433936247705298518, 5.55976092386691760361522151260, 6.08978635254481733153249457871, 7.12179458604650262776765993068, 8.062231833181424253803742489624, 8.437158815216965625003277849061